Full metadata record

DC Field Value Language
dc.contributor.authorKo, Wonseok-
dc.contributor.authorCho, Min-Kyung-
dc.contributor.authorKang, Jungmin-
dc.contributor.authorPark, Hyunyoung-
dc.contributor.authorAhn, Jinho-
dc.contributor.authorLee, Yongseok-
dc.contributor.authorLee, Seokjin-
dc.contributor.authorLee, Sangyeop-
dc.contributor.authorLee, Kwang-
dc.contributor.authorHong, Jihyun-
dc.contributor.authorYoo, Jung-Keun-
dc.contributor.authorKim, Jongsoon-
dc.date.accessioned2024-01-19T12:04:31Z-
dc.date.available2024-01-19T12:04:31Z-
dc.date.created2022-05-04-
dc.date.issued2022-04-
dc.identifier.issn2405-8297-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/115312-
dc.description.abstractAlthough O3-type NaCrO2 has various merits as a promising cathode material for Na-ion batteries, only ~& nbsp;0.5 mol Na+ in O3-type NaCrO2 can be used because of irreversible phase transition by Cr migration to the Na layers. Thus, it is important to increase the Na+ content that can be reversibly de/intercalated by O3-type NaCrO2 . Through combined studies using first-principles calculation and experiments, we demonstrate that the presence of Sb5+ in the NaCrO2 structure can suppress Cr migration even after charging to 4.1 V ( vs . Na+/Na) and enables an increase in the Na content that can be reversibly de/intercalated. During charge/discharge at C/20 (1C = 175 mA g(-1)), O3-type Na0.72Cr0.86Sb0.14O2 delivers a specific capacity of ~& nbsp;175 mAh g(-1) corresponding to ~& nbsp;0.72 mol Na+ de/intercalation, representing highly enhanced electrochemical performance compared with that of O3-type NaCrO2 , which exhibits poor coulombic efficiency of only ~& nbsp;37% under the same conditions.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleExceptionally increased reversible capacity of O3-type NaCrO2 cathode by preventing irreversible phase transition-
dc.typeArticle-
dc.identifier.doi10.1016/j.ensm.2022.01.023-
dc.description.journalClass1-
dc.identifier.bibliographicCitationEnergy Storage Materials, v.46, pp.289 - 299-
dc.citation.titleEnergy Storage Materials-
dc.citation.volume46-
dc.citation.startPage289-
dc.citation.endPage299-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000783622200001-
dc.identifier.scopusid2-s2.0-85123188153-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusLITHIUM-ION BATTERY-
dc.subject.keywordPlusHIGH-POWER-
dc.subject.keywordPlusCARBON-
dc.subject.keywordPlusELECTRODE-
dc.subject.keywordPlusLICOO2-
dc.subject.keywordAuthorNa-ion batteries-
dc.subject.keywordAuthorCathode-
dc.subject.keywordAuthorCation migration-
dc.subject.keywordAuthorReversible-
dc.subject.keywordAuthorFirst-principles calculation-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE