Full metadata record

DC Field Value Language
dc.contributor.authorJo, Yeji-
dc.contributor.authorMun, Kyusik-
dc.contributor.authorJeong, Yeonjoo-
dc.contributor.authorKwak, Joon Young-
dc.contributor.authorPark, Jongkil-
dc.contributor.authorLee, Suyoun-
dc.contributor.authorKim, Inho-
dc.contributor.authorPark, Jong-Keuk-
dc.contributor.authorHwang, Gyu-Weon-
dc.contributor.authorKim, Jaewook-
dc.date.accessioned2024-01-19T12:04:33Z-
dc.date.available2024-01-19T12:04:33Z-
dc.date.created2022-04-29-
dc.date.issued2022-04-
dc.identifier.issn2079-9292-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/115314-
dc.description.abstractIn this paper, we propose a novel Poisson process generator that uses multiple thermal noise amplifiers (TNAs) as a source of randomness and controls its event rate via a frequency-locked loop (FLL). The increase in the number of TNAs extends the effective bandwidth of amplified thermal noise and hence enhances the maximum event rate the proposed architecture can generate. Verilog-A simulation of the proposed Poisson process generator shows that its maximum event rate can be increased by a factor of 26.5 when the number of TNAs increases from 1 to 10. In order to realize parallel stochastic simulations of the biochemical reaction network, we present a fundamental reaction building block with continuous-time multiplication and addition using an AND gate and a 1-bit current-steering digital-to-analog converter, respectively. Stochastic biochemical reactions consisting of the fundamental reaction building blocks are simulated in Verilog-A, demonstrating that the simulation results are consistent with those of conventional Gillespie algorithm. An increase in the number of TNAs to accelerate the Poisson events and the use of digital AND gates for robust reaction rate calculations allow for faster and more accurate stochastic simulations of biochemical reactions than previous parallel stochastic simulators.-
dc.languageEnglish-
dc.publisherMDPI AG-
dc.titleA Poisson Process Generator Based on Multiple Thermal Noise Amplifiers for Parallel Stochastic Simulation of Biochemical Reactions-
dc.typeArticle-
dc.identifier.doi10.3390/electronics11071039-
dc.description.journalClass1-
dc.identifier.bibliographicCitationELECTRONICS, v.11, no.7-
dc.citation.titleELECTRONICS-
dc.citation.volume11-
dc.citation.number7-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000781333600001-
dc.relation.journalWebOfScienceCategoryComputer Science, Information Systems-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusCELL-CYCLE-
dc.subject.keywordPlusSYSTEMS-
dc.subject.keywordPlusORIGINS-
dc.subject.keywordAuthorPoisson process generator-
dc.subject.keywordAuthorthermal noise amplifier-
dc.subject.keywordAuthorAND gate-
dc.subject.keywordAuthorstochastic simulation-
dc.subject.keywordAuthorbiochemical reactions-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE