Online Approximate Model Representation of Unknown Objects

Authors
Kwak, KihoKim, Jun-SikHuber, Daniel F.Kanade, Takeo
Issue Date
2014
Publisher
IEEE
Citation
IEEE International Conference on Robotics and Automation (ICRA), pp.1725 - 1732
Abstract
Object representation is useful for many computer vision tasks, such as object detection, recognition, and tracking. Computer vision tasks must handle situations where unknown objects appear and must detect and track some object which is not in the trained database. In such cases, the system must learn or, otherwise derive, descriptions of new objects. In this paper, we investigate creating a representation of previously unknown objects that newly appear in the scene. The representation creates a viewpoint-invariant and scale-normalized model approximately describing an unknown object with multimodal sensors. Those properties of the representation facilitate 3D tracking of the object using 2D-to-2D image matching. The representation has both benefits of an implicit model (referred to as a view-based model) and an explicit model (referred to as a shape-based model). Experimental results demonstrate the viability of the proposed representation and outperform the existing approaches for 3D-pose estimation.
ISSN
1050-4729
URI
https://pubs.kist.re.kr/handle/201004/115401
Appears in Collections:
KIST Conference Paper > 2014
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE