Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kim, Jaeho | - |
dc.contributor.author | Kim, Hyun-Chul | - |
dc.contributor.author | Kowsari, Kavin | - |
dc.contributor.author | 윤경호 | - |
dc.contributor.author | Yoo, Seung-Schik | - |
dc.date.accessioned | 2024-01-19T12:30:37Z | - |
dc.date.available | 2024-01-19T12:30:37Z | - |
dc.date.created | 2022-04-03 | - |
dc.date.issued | 2022-04 | - |
dc.identifier.issn | 2288-5919 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/115483 | - |
dc.description.abstract | Purpose: The purpose of this study was to evaluate if transcutaneous application of low-intensity ultrasound can locally enhance the effects of finasteride on hair growth in a murine model of androgenic alopecia (AA). Methods: AA mice (injected twice per week with testosterone enanthate, n=11), under daily oral administration of finasteride, received 1-MHz ultrasound for 1 hour at the unilateral thigh area five times per week for 5 weeks. Non-thermal and non-cavitational ultrasound was delivered in a pulsed manner (55-ms pulse duration with a repetition frequency of 4 Hz). Skin temperature was measured during sonication, and the measurements were validated with numerical simulations of sonication-induced tissue temperature changes. Hair growth was assessed both photographically and histologically. Results: We found more hair growth on the sonicated thigh area than on the unsonicated thigh, beginning from week 3 through the end of the experiment. Histological analyses showed that the number of hair follicles doubled in the skin sections that received sonication compared to the unsonicated zone, with thicker follicular diameter and skin. An over five-fold increase was also observed in the anagen/telogen ratio in the sonicated area, suggesting an enhanced anagen phase. Skin temperature was unaltered by the administered sonication. Conclusion: The findings of the present study suggest that pulsed application of ultrasound promotes hair growth, potentially by disrupting the binding of albumin to finasteride. This may suggest further applications to enhance the pharmacological effects of other relevant drugs exhibiting high plasma protein binding. | - |
dc.language | English | - |
dc.publisher | 대한초음파의학회 | - |
dc.title | Transcutaneous application of ultrasound enhances the effects of finasteride in a murine model of androgenic alopecia | - |
dc.title.alternative | Transcutaneous application of ultrasound enhances the effects of finasteride in a murine model of androgenic alopecia | - |
dc.type | Article | - |
dc.identifier.doi | 10.14366/usg.21186 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | ULTRASONOGRAPHY, v.41, no.2, pp.382 - 393 | - |
dc.citation.title | ULTRASONOGRAPHY | - |
dc.citation.volume | 41 | - |
dc.citation.number | 2 | - |
dc.citation.startPage | 382 | - |
dc.citation.endPage | 393 | - |
dc.description.isOpenAccess | Y | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.description.journalRegisteredClass | kci | - |
dc.identifier.kciid | ART002827731 | - |
dc.identifier.wosid | 000767381700001 | - |
dc.relation.journalWebOfScienceCategory | Radiology, Nuclear Medicine & Medical Imaging | - |
dc.relation.journalResearchArea | Radiology, Nuclear Medicine & Medical Imaging | - |
dc.type.docType | Article; Early Access | - |
dc.subject.keywordPlus | ALBUMIN | - |
dc.subject.keywordPlus | MINOXIDIL | - |
dc.subject.keywordPlus | BINDING | - |
dc.subject.keywordPlus | ITRACONAZOLE | - |
dc.subject.keywordPlus | ADENOSINE | - |
dc.subject.keywordPlus | GROWTH | - |
dc.subject.keywordAuthor | Ultrasound | - |
dc.subject.keywordAuthor | Finasteride | - |
dc.subject.keywordAuthor | Albumin | - |
dc.subject.keywordAuthor | Androgenic alopecia | - |
dc.subject.keywordAuthor | Plasma protein binding | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.