Full metadata record

DC Field Value Language
dc.contributor.authorJo, J.H.-
dc.contributor.authorKim, H.J.-
dc.contributor.authorChoi, J.U.-
dc.contributor.authorVoronina, N.-
dc.contributor.authorLee, K.-S.-
dc.contributor.authorIhm, K.-
dc.contributor.authorLee, H.-K.-
dc.contributor.authorLim, H.-D.-
dc.contributor.authorKim, H.-
dc.contributor.authorJung, H.-G.-
dc.contributor.authorChung, K.Y.-
dc.contributor.authorYashiro, H.-
dc.contributor.authorMyung, S.-T.-
dc.date.accessioned2024-01-19T12:30:56Z-
dc.date.available2024-01-19T12:30:56Z-
dc.date.created2022-02-17-
dc.date.issued2022-04-
dc.identifier.issn2405-8297-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/115496-
dc.description.abstractHerein, the surface of the P3-Na0.6[Mn0.6Co0.2Mg0.2]O2 cathode material is fortified by introducing an ionic-conducting sodium-phosphate nanolayer (NaPO3, ?10-nm thickness). This layer facilitates Na+-ion diffusion owing to its sufficiently high ionic conductivity (?10?6 S cm?1). Moreover, the NaPO3 coating layer prevents the precipitation of surface byproducts generated from reaction with the electrolyte. The NaPO3-coated P3-Na0.6[Mn0.6Co0.2Mg0.2]O2 electrode can thus retain over 80% of the first capacity after 200 cycles not only at 0.1C but also at a high rate (5C), with a capacity retention of 88% after 300 cycles. Reversible transition-metal and oxygen redox are evidenced by X-ray absorption near-edge spectroscopy, X-ray photoelectron spectroscopy, time-of-flight secondary-ion mass spectroscopy, and operando differential electrochemical mass spectroscopy, which reveal mitigated surface-byproduct formation. These findings demonstrate the possibility of the use of oxygen redox for high-energy SIBs, ensuring long term cyclability. ? 2022 Elsevier B.V.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleFacilitating sustainable oxygen-redox chemistry for P3-type cathode materials for sodium-ion batteries-
dc.typeArticle-
dc.identifier.doi10.1016/j.ensm.2022.01.028-
dc.description.journalClass1-
dc.identifier.bibliographicCitationEnergy Storage Materials, v.46, pp.329 - 343-
dc.citation.titleEnergy Storage Materials-
dc.citation.volume46-
dc.citation.startPage329-
dc.citation.endPage343-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000783622200005-
dc.identifier.scopusid2-s2.0-85123203389-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusANIONIC REDOX-
dc.subject.keywordPlusELECTRODE MATERIAL-
dc.subject.keywordPlusHIGH-CAPACITY-
dc.subject.keywordPlusNA-EXCESS-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusP2-TYPE-
dc.subject.keywordPlusGLASSES-
dc.subject.keywordPlusPHASE-
dc.subject.keywordPlusLIFE-
dc.subject.keywordAuthorBattery-
dc.subject.keywordAuthorCathode-
dc.subject.keywordAuthorNaPO3-
dc.subject.keywordAuthorOxygen redox-
dc.subject.keywordAuthorP3-Na0.6[Mn0.6Co0.2Mg0.2]O2-
dc.subject.keywordAuthorSodium-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE