Full metadata record

DC Field Value Language
dc.contributor.authorJi Hyun Um-
dc.contributor.authorAihua Jin-
dc.contributor.authorXin Huang-
dc.contributor.authorJeesoo Seok-
dc.contributor.authorSeong Soo Park-
dc.contributor.authorJanghyuk Moon-
dc.contributor.authorMihyun Kim-
dc.contributor.authorKim So Hee-
dc.contributor.authorHyun Sik Kim-
dc.contributor.authorSung-Pyo Cho-
dc.contributor.authorHector D. Abruna-
dc.contributor.authorSeung-Ho Yu-
dc.date.accessioned2024-01-19T12:30:58Z-
dc.date.available2024-01-19T12:30:58Z-
dc.date.created2022-01-10-
dc.date.issued2022-04-
dc.identifier.issn1754-5692-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/115499-
dc.description.abstractAs a promising cathode material, selenium has attracted a great deal of research interest due to its high theoretical capacity analogous to sulfur in lithium-chalcogen batteries. However, unlike S cathodes, mechanistic understanding including fundamental observations on the formation of Li2Se and Se deposits, and their dissolution in Se cathodes remains at an early stage. Here, we directly visualize the dissolution and deposition reactions of Se cathodes using operando transmission X-ray microscopy, and build a nucleation site distribution map by tracking the individual solidification of electrolyte-soluble polyselenide intermediates into Se deposits. This real-time analysis reveals the nucleation behavior dependent on the depletion of polyselenides as well as the morphological characteristics through their subsequent growth, along with the different nucleation modes for particle-like Li2Se upon discharge and dendritic Se upon charge. We further propose that appropriate operating conditions, prioritizing the nucleation over the growth, can effectively utilize Se, precluding the dendritic growth.-
dc.languageEnglish-
dc.publisherRoyal Society of Chemistry-
dc.titleCompetitive nucleation and growth behavior in Li-Se batteries-
dc.typeArticle-
dc.identifier.doi10.1039/D1EE03619J-
dc.description.journalClass1-
dc.identifier.bibliographicCitationEnergy & Environmental Science, v.15, no.4, pp.1493 - 1502-
dc.citation.titleEnergy & Environmental Science-
dc.citation.volume15-
dc.citation.number4-
dc.citation.startPage1493-
dc.citation.endPage1502-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000762943400001-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalWebOfScienceCategoryEnvironmental Sciences-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaEnvironmental Sciences & Ecology-
dc.type.docTypeArticle-
dc.subject.keywordPlusX-RAY-ABSORPTION-
dc.subject.keywordPlusLITHIUM-METAL GROWTH-
dc.subject.keywordPlusSELENIUM-
dc.subject.keywordPlusSULFUR-
dc.subject.keywordPlusNANOWIRES-
dc.subject.keywordPlusMECHANISM-
dc.subject.keywordPlusKINETICS-
dc.subject.keywordPlusCATHODE-
dc.subject.keywordPlusENERGY-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE