Full metadata record

DC Field Value Language
dc.contributor.authorKang, Dong Won-
dc.contributor.authorJun, Minki-
dc.contributor.authorKim, Jun-
dc.contributor.authorYang, Heesu-
dc.contributor.authorTaehyun Kwon-
dc.contributor.authorJoo, Jinwhan-
dc.contributor.authorKim, Hyojin-
dc.contributor.authorKang, Minjung-
dc.contributor.authorKim, Jin Young-
dc.contributor.authorLee, Kwangyeol-
dc.contributor.authorHong, Chang Seop-
dc.date.accessioned2024-01-19T12:31:13Z-
dc.date.available2024-01-19T12:31:13Z-
dc.date.created2022-06-30-
dc.date.issued2022-03-
dc.identifier.issn2574-0962-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/115514-
dc.description.abstractWater electrolysis shows great promise as a viable pathway for the scalable production of high-purity hydrogen, a clean and renewable energy source. Despite being extensively developed for water splitting, scalable electrocatalysts that can balance catalytic activity and cost-effectiveness continue to be in great demand. Herein, we report a low Pt content electrocatalyst based on a N-doped carbon matrix derived from a hypercrosslinked porous organic polymer (HCP). The HCP was prepared through double Friedel-Crafts reactions with improved porosity for the first time. After Pt metallization and carbonization, a scalable electrocatalyst was obtained without other capping and reducing agents. The prepared catalyst exhibited top-tier performances in catalytic activity and durability in hydrogen evolution reaction when compared to previously reported metal-organic framework- and covalent organic framework-based catalysts. In addition, a water splitting cell using a porous material was demonstrated for the first time. This work provides insight into the design of a scalable electrocatalyst for the generation of hydrogen from water electrolysis.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.titleDouble Hypercrosslinked Porous Organic Polymer-Derived Electrocatalysts for a Water Splitting Device-
dc.typeArticle-
dc.identifier.doi10.1021/acsaem.1c03887-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS APPLIED ENERGY MATERIALS, v.5, no.3, pp.3269 - 3274-
dc.citation.titleACS APPLIED ENERGY MATERIALS-
dc.citation.volume5-
dc.citation.number3-
dc.citation.startPage3269-
dc.citation.endPage3274-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000812951800001-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusCARBON-
dc.subject.keywordPlusREDUCTION-
dc.subject.keywordPlusEVOLUTION-
dc.subject.keywordPlusSUPPORT-
dc.subject.keywordPlusCO-
dc.subject.keywordAuthorhypercrosslinked porous organic polymer-
dc.subject.keywordAuthordouble polymerization-
dc.subject.keywordAuthorhydrogen evolution reaction-
dc.subject.keywordAuthorlow Pt content electrocatalyst-
dc.subject.keywordAuthorwater splitting device-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE