Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Rehman, Junaid ur | - |
dc.contributor.author | Hong, Seongjin | - |
dc.contributor.author | Kim, Yong-Su | - |
dc.contributor.author | Shin, Hyundong | - |
dc.date.accessioned | 2024-01-19T12:31:33Z | - |
dc.date.available | 2024-01-19T12:31:33Z | - |
dc.date.created | 2022-04-29 | - |
dc.date.issued | 2022-03 | - |
dc.identifier.issn | 2469-9926 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/115533 | - |
dc.description.abstract | We propose a framework to variationally obtain detectable capacity bounds for quantum channels. The proposal of this framework is motivated by the difficulty of estimating the von Neumann entropy of an unknown quantum state. Instead of estimating the von Neumann entropy at the channel output, we propose to estimate the state purity-which can be measured by a single measurement setting-followed by bounding the von Neumann entropy from above and below. This procedure leads to new upper and lower bounds on various communication rates of quantum channels for some fixed input states. Then, by utilizing the variational method to find optimal input states we obtain lower bounds on (i) the quantum capacity of arbitrary channels, (ii) the entanglement-assisted classical capacity of arbitrary channels, and (iii) the classical capacity of covariant channels. Corresponding to these lower bounds, we also obtain upper bounds on (i) N-shot coherent information, (ii) the entanglement-assisted classical capacity, and (iii) the N-shot Holevo capacity of arbitrary quantum channels. All these bounds can be estimated by a single measurement setting without needing a full process tomography or any further a priori knowledge, e.g., preferred basis of the channel. | - |
dc.language | English | - |
dc.publisher | American Physical Society | - |
dc.title | Variational estimation of capacity bounds for quantum channels | - |
dc.type | Article | - |
dc.identifier.doi | 10.1103/PhysRevA.105.032616 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | Physical Review A, v.105, no.3 | - |
dc.citation.title | Physical Review A | - |
dc.citation.volume | 105 | - |
dc.citation.number | 3 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000783210200004 | - |
dc.relation.journalWebOfScienceCategory | Optics | - |
dc.relation.journalWebOfScienceCategory | Physics, Atomic, Molecular & Chemical | - |
dc.relation.journalResearchArea | Optics | - |
dc.relation.journalResearchArea | Physics | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | ENTANGLEMENT | - |
dc.subject.keywordPlus | ENTROPY | - |
dc.subject.keywordPlus | TRANSMISSION | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.