Full metadata record

DC Field Value Language
dc.contributor.authorDevina, Winda-
dc.contributor.authorCahyadi, Handi Setiadi-
dc.contributor.authorAlbertina, Ingrid-
dc.contributor.authorChandra, Christian-
dc.contributor.authorPark, Jae-Ho-
dc.contributor.authorChung, Kyung Yoon-
dc.contributor.authorChang, Wonyoung-
dc.contributor.authorKwak, Sang Kyu-
dc.contributor.authorKim, Jaehoon-
dc.date.accessioned2024-01-19T12:31:42Z-
dc.date.available2024-01-19T12:31:42Z-
dc.date.created2022-04-14-
dc.date.issued2022-03-
dc.identifier.issn1385-8947-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/115543-
dc.description.abstractThe use of carbon-based supports, such as graphene and porous carbon, is a well-established approach to overcome the rapid capacity fading issues associated with alloy-based anode materials in lithium-ion batteries (LIBs). However, adopting carbonaceous materials that typically exhibit a low density eventually diminishes the primary purpose of alloys as high-energy-density anode materials. In this study, we introduce three-dimensional hierarchically porous molybdenum carbide (PMC) with high energy density, robust mechanical strength, and high electronic conductivity, which make it a promising alternative support for suppressing the huge volume expansion of alloying-based materials. Carbon-coated, ultrasmall Bi nanodots with an average size of 6.4 nm are uniformly embedded on the PMC surface (denoted as C-Bi/PMC) by facilitating heterogeneous nucleation. When tested as an anode in an LIB, the C-Bi/PMC electrode exhibits a high reversible capacity of 422 mAh g(-1) at 50 mA g(-1), high-rate capacity of 268 mAh g(-1) at 1000 mA g(-1), and long-term stability of 400 mAh g-1 at 250 mA g-1 over 500 cycles followed by 0.002 mAh g(-1)& nbsp;decay per cycle at 5000 mA g(-1)& nbsp;over subsequent 1000 cycles. When paired with LiNi0.5Co0.2Mn0.3O2 cathode as full-cell LIBs, the C-Bi/PMC anode deliver high gravimetric and volumetric energy densities of 352 Wh kg(-1) and 563 Wh L-1, respectively. In-situ X-ray diffraction patterns captured during cycling reveal that the Li+-ion insertion mechanism in the voltage plateau region at 0.7-1.0 V consists of the intercalation between Bi layers followed by the formation of triclinic LiBi phase and the subsequent transition of triclinic LiBi to cubic Li3Bi phase.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleHigh-energy-density carbon-coated bismuth nanodots on hierarchically porous molybdenum carbide for superior lithium storage-
dc.typeArticle-
dc.identifier.doi10.1016/j.cej.2021.134276-
dc.description.journalClass1-
dc.identifier.bibliographicCitationChemical Engineering Journal, v.432-
dc.citation.titleChemical Engineering Journal-
dc.citation.volume432-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000777268000005-
dc.identifier.scopusid2-s2.0-85122231449-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusQUANTITATIVE PHASE-ANALYSIS-
dc.subject.keywordPlusPOWDER DIFFRACTION-
dc.subject.keywordPlusGRAPHENE OXIDE-
dc.subject.keywordPlusLI-ION-
dc.subject.keywordPlusANODES-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusSPHERES-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusCONVERSION-
dc.subject.keywordAuthorBismuth-
dc.subject.keywordAuthorMolybdenum carbide-
dc.subject.keywordAuthorSalt template-
dc.subject.keywordAuthorAnode-
dc.subject.keywordAuthorLithium-ion batteries-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE