Full metadata record

DC Field Value Language
dc.contributor.authorSeo, Min-
dc.contributor.authorCho, Min Kyung-
dc.contributor.authorKang, Un Hyeon-
dc.contributor.authorJeon, Sin Young-
dc.contributor.authorLim, Sang-Ho-
dc.contributor.authorHan, Seung Hee-
dc.date.accessioned2024-01-19T12:32:04Z-
dc.date.available2024-01-19T12:32:04Z-
dc.date.created2022-04-05-
dc.date.issued2022-03-
dc.identifier.issn2162-8769-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/115563-
dc.description.abstractOwing to the rapid growth of very large-scale integration technology at nanometer scales, cobalt and ruthenium interconnects are being used to solve the high-resistivity copper problem. However, with such interconnects, carbon contamination can occur during chemical vapor deposition and atomic layer deposition. Bipolar (BP) high-power impulse magnetron sputtering (HiPIMS) with a high ionization rate is an excellent vacuum process for depositing low-resistivity thin films. In this study, low-resistivity cobalt, ruthenium, and copper thin films were deposited using BP-HiPIMS, HiPIMS, and direct-current magnetron sputtering (DCMS). The resistivities of the cobalt, ruthenium, and copper thin films (<10 nm) deposited via BP-HiPIMS were 91.5, 75, and 35%, respectively, lower than the resistivities of the same film materials deposited using direct-current MS. To solve the low pass-through flux of cobalt, the target temperature was raised to the Curie temperature (approximately 1100 degrees C) using a thermal insulation backplate (Ti-6Al-4V), resulting in a resistivity reduction of about 73%. The study provides a novel method for the vacuum deposition of cobalt and ruthenium thin films.-
dc.languageEnglish-
dc.publisherElectrochemical Society, Inc.-
dc.titleLow-Resistivity Cobalt and Ruthenium Ultra-Thin Film Deposition Using Bipolar HiPIMS Technique-
dc.typeArticle-
dc.identifier.doi10.1149/2162-8777/ac5805-
dc.description.journalClass1-
dc.identifier.bibliographicCitationECS Journal of Solid State Science and Technology, v.11, no.3-
dc.citation.titleECS Journal of Solid State Science and Technology-
dc.citation.volume11-
dc.citation.number3-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000765534700001-
dc.identifier.scopusid2-s2.0-85126466693-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusMEAN FREE-PATH-
dc.subject.keywordPlusTEMPERATURE-
dc.subject.keywordPlusTARGET-
dc.subject.keywordPlusMODEL-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE