Full metadata record

DC Field Value Language
dc.contributor.authorLee, Taewoong-
dc.contributor.authorKwon, Woong-
dc.contributor.authorKang, Haisu-
dc.contributor.authorChae, Seongwook-
dc.contributor.authorKim, Eunji-
dc.contributor.authorKim, Jiyun-
dc.contributor.authorChae, Han Gi-
dc.contributor.authorLee, Albert S.-
dc.contributor.authorJeong, Euigyung-
dc.contributor.authorLee, Jin Hong-
dc.contributor.authorLee, Seung Geol-
dc.date.accessioned2024-01-19T12:32:27Z-
dc.date.available2024-01-19T12:32:27Z-
dc.date.created2022-04-03-
dc.date.issued2022-03-
dc.identifier.issn0008-6223-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/115587-
dc.description.abstractDesign of high energy density lithium storage materials is one of the everlasting issues in energy storage systems to realize a fully clean and sustainable energy grid. Here, 2,9-dimethyl quinacridone was selected as a precursor to prepare carbon-based electrode via low temperature heat-treatment process from 750 degrees C to 1050 degrees C. The pyro-polymerization of 2,9-dimethyl quinacridone induced a distinctive morphological transformation from rice husk-shaped 2,9-dimethyl quinacridone to carbon nanofibers. Electrode fabricated from pigment derived carbon nanofibers (PCNF) pyrolyzed at 750 degrees C maintained 878 mAh g-1 at a current density of 1 A g-1 and good Coulombic efficiency up to 98% after 1000 cycles. Furthermore, it delivered 337 mAh g-1 at a high current density of 25 A g-1. The superior performance was attributed to the stable structure of pristine 2,9-dimethyl quinacridone giving high thermal stability and crystallinity owing to well-defined pi-pi and hydrogen bonding interactions, thus rendering a stable microstructure with a large d-spacing of (002) plane of 3.580 angstrom, as well as efficient surface redox reactions. Density functional theory calculations indicated that the large interlayer distance could facilitate fast lithium ion insertion/extraction because of a similar to 38% lower energy barrier for lithium ion insertion than compared with graphite. (C) 2021 Elsevier Ltd. All rights reserved.-
dc.languageEnglish-
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD-
dc.titlePyro-polymerization of organic pigments for superior lithium storage-
dc.typeArticle-
dc.identifier.doi10.1016/j.carbon.2021.11.036-
dc.description.journalClass1-
dc.identifier.bibliographicCitationCARBON, v.188, pp.187 - 196-
dc.citation.titleCARBON-
dc.citation.volume188-
dc.citation.startPage187-
dc.citation.endPage196-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000728540900010-
dc.identifier.scopusid2-s2.0-85120407131-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusANODE MATERIALS-
dc.subject.keywordPlusHARD CARBONS-
dc.subject.keywordPlusION-
dc.subject.keywordPlusPYROLYSIS-
dc.subject.keywordPlusBATTERIES-
dc.subject.keywordPlusLI-
dc.subject.keywordPlusTEMPERATURE-
dc.subject.keywordPlusCHALLENGES-
dc.subject.keywordPlusINSERTION-
dc.subject.keywordAuthorLithium-ion battery-
dc.subject.keywordAuthorOrganic pigment-
dc.subject.keywordAuthorQuinacridone-
dc.subject.keywordAuthorPyro-polymerization-
dc.subject.keywordAuthorCarbon nanofiber-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE