Boron nitride/carbon nanotube composite paper for self-activated chemiresistive detection

Authors
Lim, G.-H.Bae, S.Kim, Y.-J.Lee, K.S.Cho, H.Park, Y.J.Lee, H.-S.Kim, S.-H.Kim, S.Chung, H.-S.Yun, Y.J.Kim, Ka youngKim, C.Seo, J.-S.Moon, H.G.Son, D.I.
Issue Date
2022-03
Publisher
Elsevier BV
Citation
Sensors and Actuators, B: Chemical, v.355
Abstract
Carbon nanotube buckypaper has been considered as one of the promising candidates for chemiresistive sensor applications, especially with environmental monitoring purpose due to large surface area, device flexibility, and the broad spectrum of responsive chemical vapor molecules. However, one of typical drawbacks in carbon-based sensors is incomplete recovery to their initial state after chemical reactions with analytes, degrading sensing reproducibility. In this work, we present a thermally stable and robust boron nitride nanotube/carbon nanotube (BNCNT) hybrid paper for self-enhanced chemiresistive sensing with full reversibility. Boron nitride nanotube (BNNT) plays an essential role in long-term reliability (33 days) at the operating temperature of 200 °C. In addition, a finite-element method was applied to understand the thermal behavior of the BNCNT network structure. The BNCNT paper-based chemiresisitve sensor exhibited highly sensitive, selective, and fully reversible responses to NO2 without external heating. Also, the sensor demonstrated the detection limit of parts per billion (ppb)-levels under strain with high reliability. With these remarkable strengths, significantly facile and cost-effective fabrication processes provide an environmental sensing platform for use in smart clothing with wearable electronics. ? 2021
Keywords
GAS-SENSING PROPERTIES; CARBON NANOTUBES; ELECTRONIC NOSE; GRAPHENE OXIDE; TEMPERATURE; HUMIDITY; SENSOR; NANOSTRUCTURES; Boron-nitride/carbon nanotube hybrid; Chemiresistive sensor; Fully-recovered CNT sensor; NO2 sensor
ISSN
0925-4005
URI
https://pubs.kist.re.kr/handle/201004/115597
DOI
10.1016/j.snb.2021.131273
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE