Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Yoon, H.G. | - |
dc.contributor.author | Lee, C. | - |
dc.contributor.author | Lee, D.B. | - |
dc.contributor.author | Park, S.M. | - |
dc.contributor.author | Choi, Jun Woo | - |
dc.contributor.author | Kwon, Hee Young | - |
dc.contributor.author | Won, C. | - |
dc.date.accessioned | 2024-01-19T12:33:02Z | - |
dc.date.available | 2024-01-19T12:33:02Z | - |
dc.date.created | 2022-01-10 | - |
dc.date.issued | 2022-03 | - |
dc.identifier.issn | 0010-4655 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/115617 | - |
dc.description.abstract | Autoencoder, an artificial neural network, was adopted to generate spin structures that interpolate and extrapolate between two distinct magnetic chiral states, the labyrinth structure and the skyrmion structure. We trained the autoencoder using two distinct magnetic chiral structures. Each input data is encoded through a deep learning process into a latent code, a new representation of the information in a reduced dimensional space. We investigated the latent space to acquire information on the structure of the latent code distribution. With the acquired information, we successfully produced various magnetic structures that exhibit plausible properties under various external fields not provided in the training data. The latent codes were modified by two algorithms. The first algorithm utilizes inversion and translation operation in the latent space and the second algorithm uses recursive flow with a modification bias. The first produced structures preserving the chiral structure of original data and the second produced statistically plausible states. ? 2021 Elsevier B.V. | - |
dc.language | English | - |
dc.publisher | Elsevier BV | - |
dc.title | Interpolation and extrapolation between the magnetic chiral states using autoencoder | - |
dc.type | Article | - |
dc.identifier.doi | 10.1016/j.cpc.2021.108244 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | Computer Physics Communications, v.272 | - |
dc.citation.title | Computer Physics Communications | - |
dc.citation.volume | 272 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000754669100014 | - |
dc.identifier.scopusid | 2-s2.0-85119980985 | - |
dc.relation.journalWebOfScienceCategory | Computer Science, Interdisciplinary Applications | - |
dc.relation.journalWebOfScienceCategory | Physics, Mathematical | - |
dc.relation.journalResearchArea | Computer Science | - |
dc.relation.journalResearchArea | Physics | - |
dc.type.docType | Article | - |
dc.subject.keywordAuthor | Autoencoder | - |
dc.subject.keywordAuthor | Extrapolation | - |
dc.subject.keywordAuthor | Interpolation | - |
dc.subject.keywordAuthor | Machine learning | - |
dc.subject.keywordAuthor | Magnetism | - |
dc.subject.keywordAuthor | Spin state generation | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.