Full metadata record

DC Field Value Language
dc.contributor.authorFeng, Xuezhen-
dc.contributor.authorZou, Haiyuan-
dc.contributor.authorZheng, Renji-
dc.contributor.authorWei, Wenfei-
dc.contributor.authorWang, Ranhao-
dc.contributor.authorZou, Wensong-
dc.contributor.authorLim, Gukhyun-
dc.contributor.authorHong, Jihyun-
dc.contributor.authorDuan, Lele-
dc.contributor.authorChen, Hong-
dc.date.accessioned2024-01-19T12:33:28Z-
dc.date.available2024-01-19T12:33:28Z-
dc.date.created2022-05-04-
dc.date.issued2022-02-
dc.identifier.issn1530-6984-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/115641-
dc.description.abstractHeterostructure engineering plays a vital role in regulating the material interface, thus boosting the electron transportation pathway in advanced catalysis. Herein, a novel Bi2O3/BiO2 heterojunction catalyst was synthesized via a molten alkali-assisted dealumination strategy and exhibited rich structural dynamics for an electrocatalytic CO2 reduction reaction (ECO2RR). By coupling in situ X-ray diffraction and Raman spectroscopy measurements, we found that the as-synthesized Bi2O3/BiO2 heterostructure can be transformed into a novel Bi/BiO2 Mott-Schottky heterostructure, leading to enhanced adsorption performance for CO2 and *OCHO intermediates. Consequently, high selectivity toward formate larger than 95% was rendered in a wide potential window along with an optimum partial current density of -111.42 mA cm(-2) that benchmarked with the state-of-the-art Bi-based ECO2RR catalysts. This work reports the construction and fruitful structural dynamic insights of a novel heterojunction electrocatalyst for ECO2RR, which paves the way for the rational design of efficient heterojunction electrocatalysts for ECO2RR and beyond.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titleBi2O3/BiO2 Nanoheterojunction for Highly Efficient Electrocatalytic CO2 Reduction to Formate-
dc.typeArticle-
dc.identifier.doi10.1021/acs.nanolett.1c04683-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNano Letters, v.22, no.4, pp.1656 - 1664-
dc.citation.titleNano Letters-
dc.citation.volume22-
dc.citation.number4-
dc.citation.startPage1656-
dc.citation.endPage1664-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000776700100027-
dc.identifier.scopusid2-s2.0-85124272256-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusELECTROCHEMICAL REDUCTION-
dc.subject.keywordPlusFORMIC-ACID-
dc.subject.keywordPlusFUEL-CELL-
dc.subject.keywordPlusBI-
dc.subject.keywordPlusELECTROREDUCTION-
dc.subject.keywordPlusDESIGN-
dc.subject.keywordPlusSYSTEM-
dc.subject.keywordPlusSN-
dc.subject.keywordAuthorDealumination-
dc.subject.keywordAuthorHeterojunction-
dc.subject.keywordAuthorCO2 Reduction-
dc.subject.keywordAuthorStructure Evolution-
dc.subject.keywordAuthorBismuth Oxides-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE