Full metadata record

DC Field Value Language
dc.contributor.authorYun, Bin-Na-
dc.contributor.authorLee, Seongsoo-
dc.contributor.authorJung, Wo Dum-
dc.contributor.authorShin, Hyeon-Ji-
dc.contributor.authorKim, Jun Tae-
dc.contributor.authorYu, Seungho-
dc.contributor.authorChung, Kyung Yoon-
dc.contributor.authorKim, Hyoungchul-
dc.contributor.authorJung, Hun-Gi-
dc.date.accessioned2024-01-19T12:33:33Z-
dc.date.available2024-01-19T12:33:33Z-
dc.date.created2022-04-05-
dc.date.issued2022-02-
dc.identifier.issn1944-8244-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/115647-
dc.description.abstractSulfide-based inorganic solid electrolytes have been considered promising candidates for all-solid-state batteries owing to their high ionic conductivity. Compared with oxide-based inorganic solid electrolytes which require high-temperature sintering, the intrinsic deformability of sulfide electrolytes enables the fabrication of all-solid-state batteries by a simple cold pressing method. Nevertheless, the performance of sulfide-based all-solid-state batteries is still unsatisfactory, owing to the insufficient interfacial properties within the composite electrodes. Using cold pressing alone, it is challenging to form intimate contacts with rigid oxide based cathode materials. Here, we demonstrate a mild-temperature pressing (MP) method for the fabrication of all-solid-state batteries. The mild temperature (85 degrees C) increases the deformability of the sulfide and therefore helps to form more enhanced interfacial contacts in the composite cathode without side reactions. Compared with the conventional cold pressing cell, the MP cell possesses more favorable contacts, resulting in higher capacity, cyclability, and rate capability. In addition, we demonstrate that the charge-transfer resistance in composite cathodes dominates the electrochemical performance of all-solid-state batteries.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titleFacile Method for the Formation of Intimate Interfaces in Sulfide-Based All-Solid-State Batteries-
dc.typeArticle-
dc.identifier.doi10.1021/acsami.1c24895-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Applied Materials & Interfaces, v.14, no.7, pp.9242 - 9248-
dc.citation.titleACS Applied Materials & Interfaces-
dc.citation.volume14-
dc.citation.number7-
dc.citation.startPage9242-
dc.citation.endPage9248-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000757907700001-
dc.identifier.scopusid2-s2.0-85125130363-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusN-METHYLFORMAMIDE-
dc.subject.keywordPlusION CONDUCTORS-
dc.subject.keywordPlusLIQUID-PHASE-
dc.subject.keywordPlusELECTROLYTE-
dc.subject.keywordAuthorsulfide solid electrolyte-
dc.subject.keywordAuthorall-solid-state battery-
dc.subject.keywordAuthorinterfacial contacts-
dc.subject.keywordAuthormild temperature-
dc.subject.keywordAuthordeformability-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE