Full metadata record

DC Field Value Language
dc.contributor.authorRa, Hyun-Soo-
dc.contributor.authorAhn, Jongtae-
dc.contributor.authorJang, Jisu-
dc.contributor.authorTAEWOOK, KIM-
dc.contributor.authorSong, Seung Ho-
dc.contributor.authorJeong, Min-Hye-
dc.contributor.authorLee, Sang-Hyeon-
dc.contributor.authorYoon, Taegeun-
dc.contributor.authorYoon, Tea Woong-
dc.contributor.authorKim, Seungsoo-
dc.contributor.authorTaniguch, Takashi-
dc.contributor.authorWatanabe, Kenji-
dc.contributor.authorSong, Young Jae-
dc.contributor.authorLee, Jong-Soo-
dc.contributor.authorHwang, Do Kyung-
dc.date.accessioned2024-01-19T12:34:19Z-
dc.date.available2024-01-19T12:34:19Z-
dc.date.created2022-02-17-
dc.date.issued2022-02-
dc.identifier.issn0935-9648-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/115686-
dc.description.abstractThe probing of fundamental photophysics is a key prerequisite for the construction of diverse optoelectronic devices and circuits. To date, though, photocarrier dynamics in 2D materials remains unclear, plagued primarily by two issues: a large exciton binding energy, and the lack of a suitable system that enables the manipulation of excitons. Here, a WSe2-based phototransistor with an asymmetric split-gate configuration is demonstrated, which is named the "asymmetry field-effect phototransistor" (AFEPT). This structure allows for the effective modulation of the electric-field profile across the channel, thereby providing a standard device platform for exploring the photocarrier dynamics of the intrinsic WSe2 layer. By controlling the electric field, this work the spatial evolution of the photocurrent is observed, notably with a strong signal over the entire WSe2 channel. Using photocurrent and optical spectroscopy measurements, the physical origin of the novel photocurrent behavior is clarified and a room-temperature exciton binding energy of 210 meV is determined with the device. In the phototransistor geometry, lateral p-n junctions serve as a simultaneous pathway for both photogenerated electrons and holes, reducing their recombination rate and thus enhancing photodetection. The study establishes a new device platform for both fundamental studies and technological applications.-
dc.languageEnglish-
dc.publisherWILEY-VCH Verlag GmbH & Co. KGaA, Weinheim-
dc.titleAn Asymmetry Field-Effect Phototransistor for Solving Large Exciton Binding Energy of 2D TMDCs-
dc.typeArticle-
dc.identifier.doi10.1002/adma.202107468-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAdvanced Materials, v.34, no.7-
dc.citation.titleAdvanced Materials-
dc.citation.volume34-
dc.citation.number7-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000740655700001-
dc.identifier.scopusid2-s2.0-85122680715-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusLAYER MOS2-
dc.subject.keywordPlusWSE2-
dc.subject.keywordPlusGAIN-
dc.subject.keywordPlusWS2-
dc.subject.keywordAuthorasymmetry-
dc.subject.keywordAuthorexciton dynamics-
dc.subject.keywordAuthorfield-effect transistors-
dc.subject.keywordAuthorphototransistors-
dc.subject.keywordAuthorWSe-
dc.subject.keywordAuthor(2)-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE