Full metadata record

DC Field Value Language
dc.contributor.authorHi Gyu Moon-
dc.contributor.authorYoungmo Jung-
dc.contributor.authorBeomju Shin-
dc.contributor.authorDonggeun Lee-
dc.contributor.authorKayoung Kim-
dc.contributor.authorDeok Ha Woo-
dc.contributor.authorSeok Lee-
dc.contributor.authorSooyeon Kim-
dc.contributor.authorChong-Yun Kang-
dc.contributor.authorTaikjin Lee-
dc.contributor.authorChulki Kim-
dc.date.accessioned2024-01-19T13:00:22Z-
dc.date.available2024-01-19T13:00:22Z-
dc.date.created2022-02-17-
dc.date.issued2022-02-
dc.identifier.issn1424-8220-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/115772-
dc.description.abstractA fully integrated sensor array assisted by pattern recognition algorithm has been a primary candidate for the assessment of complex vapor mixtures based on their chemical fingerprints. Diverse prototypes of electronic nose systems consisting of a multisensory device and a post processing engine have been developed. However, their precision and validity in recognizing chemical vapors are often limited by the collected database and applied classifiers. Here, we present a novel way of preparing the database and distinguishing chemical vapor mixtures with small data acqui-sition for chemical vapors and their mixtures of interest. The database for individual vapor analytes is expanded and the one for their mixtures is prepared in the first­order approximation. Recognition of individual target vapors of NO2, HCHO, and NH3 and their mixtures was evaluated by applying the support vector machine (SVM) classifier in different conditions of temperature and humidity. The suggested method demonstrated the recognition accuracy of 95.24%. The suggested method can pave a way to analyze gas mixtures in a variety of industrial and safety applications. ? 2022 by the authors. Licensee MDPI, Basel, Switzerland.-
dc.languageEnglish-
dc.publisherMultidisciplinary Digital Publishing Institute (MDPI)-
dc.titleIdentification of Chemical Vapor Mixture Assisted by Artificially Extended Database for Environmental Monitoring-
dc.typeArticle-
dc.identifier.doi10.3390/s22031169-
dc.description.journalClass1-
dc.identifier.bibliographicCitationSensors, v.22, no.3-
dc.citation.titleSensors-
dc.citation.volume22-
dc.citation.number3-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000760146300001-
dc.identifier.scopusid2-s2.0-85123873968-
dc.relation.journalWebOfScienceCategoryChemistry, Analytical-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryInstruments & Instrumentation-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaInstruments & Instrumentation-
dc.type.docTypeArticle-
dc.subject.keywordPlusFIELD-EFFECT TRANSISTOR-
dc.subject.keywordPlusELECTRONIC-NOSE-
dc.subject.keywordPlusTHIN-FILM-
dc.subject.keywordPlusGAS-
dc.subject.keywordPlusNANOWIRE-
dc.subject.keywordPlusRECOGNITION-
dc.subject.keywordPlusSENSORS-
dc.subject.keywordPlusBIOGAS-
dc.subject.keywordAuthorChemiresistive sensor array-
dc.subject.keywordAuthorIdentification of gas mixture-
dc.subject.keywordAuthorMachine learning-
dc.subject.keywordAuthorPrincipal component analysis (PCA)-
dc.subject.keywordAuthorSupport vector machine (SVM)-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE