Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kim, J.-S. | - |
dc.contributor.author | Soo, Shin S. | - |
dc.contributor.author | Lee, J.-H. | - |
dc.contributor.author | Kim, B.-K. | - |
dc.contributor.author | Kim, H. | - |
dc.date.accessioned | 2024-01-19T13:00:41Z | - |
dc.date.available | 2024-01-19T13:00:41Z | - |
dc.date.created | 2022-01-10 | - |
dc.date.issued | 2022-02 | - |
dc.identifier.issn | 0169-4332 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/115788 | - |
dc.description.abstract | We investigated the reversible phase evolution reaction of Li3InCl6 as a representative halide Li-ion conductor due to the reaction of H2O based on the density functional theory. To understand the surface reactivity of Li3InCl6, the hydrolysis reaction was calculated using the thermodynamically stable Li3InCl6 surface. We found that the low adsorption energy of ?0.60 eV and the high energy barrier of 2.10 eV were induced the formation of hydrated phase due to the continuous adsorption of H2O rather than destructive hydrolysis reaction. Furthermore, the H2O adsorption can lower the surface energy and continuously form a new surface to induce a phase evolution. | - |
dc.language | English | - |
dc.publisher | Elsevier BV | - |
dc.title | Theoretical analysis of reversible phase evolution in Li-ion conductive halides | - |
dc.type | Article | - |
dc.identifier.doi | 10.1016/j.apsusc.2021.151621 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | Applied Surface Science, v.574 | - |
dc.citation.title | Applied Surface Science | - |
dc.citation.volume | 574 | - |
dc.description.isOpenAccess | Y | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000723626800002 | - |
dc.identifier.scopusid | 2-s2.0-85118099394 | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Coatings & Films | - |
dc.relation.journalWebOfScienceCategory | Physics, Applied | - |
dc.relation.journalWebOfScienceCategory | Physics, Condensed Matter | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.relation.journalResearchArea | Physics | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | Adsorption | - |
dc.subject.keywordPlus | Hydration | - |
dc.subject.keywordPlus | Hydrolysis | - |
dc.subject.keywordPlus | Indium compounds | - |
dc.subject.keywordPlus | Lithium compounds | - |
dc.subject.keywordPlus | Solid electrolytes | - |
dc.subject.keywordPlus | Solid state devices | - |
dc.subject.keywordPlus | Adsorption energies | - |
dc.subject.keywordPlus | All-solid-state battery | - |
dc.subject.keywordPlus | Density-functional-theory | - |
dc.subject.keywordPlus | Evolution reactions | - |
dc.subject.keywordPlus | Higher-energy barriers | - |
dc.subject.keywordPlus | Hydrolysis reaction | - |
dc.subject.keywordPlus | Ion conductors | - |
dc.subject.keywordPlus | Phase evolutions | - |
dc.subject.keywordPlus | Surface reactivity | - |
dc.subject.keywordPlus | Thermodynamically stable | - |
dc.subject.keywordPlus | Density functional theory | - |
dc.subject.keywordAuthor | All-solid-state battery | - |
dc.subject.keywordAuthor | Density functional theory | - |
dc.subject.keywordAuthor | Hydration | - |
dc.subject.keywordAuthor | Hydrolysis | - |
dc.subject.keywordAuthor | Li3InCl6 | - |
dc.subject.keywordAuthor | Phase evolution | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.