Full metadata record

DC Field Value Language
dc.contributor.authorKim, Mun Kyoung-
dc.contributor.authorLee, Hojeong-
dc.contributor.authorWon, Jong Ho-
dc.contributor.authorSim, Woohyeong-
dc.contributor.authorKang, Shin Joon-
dc.contributor.authorChoi, Hansaem-
dc.contributor.authorSharma, Monika-
dc.contributor.authorOh, Hyung-Suk-
dc.contributor.authorRinge, Stefan-
dc.contributor.authorKwon, Youngkook-
dc.contributor.authorJeong, Hyung Mo-
dc.date.accessioned2024-01-19T13:00:55Z-
dc.date.available2024-01-19T13:00:55Z-
dc.date.created2022-01-10-
dc.date.issued2022-02-
dc.identifier.issn1616-301X-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/115802-
dc.description.abstractElectrochemical carbon dioxide reduction reaction (CO2RR) is a promising approach to mitigate CO2 concentration and generate carbon feedstock. Recently, the (sub-)nanometer design of catalyst structures has been revealed as an efficient means to control the reaction process through the local reaction environment. Herein, the synthesis of a novel tin oxide (SnOx) nanoparticle (NP) catalyst with highly controlled sub-nanoscale interplanar gaps of widths <1 nm (SnOx NP-s) is reported via the lithium electrochemical tuning (LiET) method. Transmission electron microscopy (TEM) and 3D-tomo-scanning TEM (STEM) analysis confirm the presence of a distinct segmentation pattern and the newly engineered interparticle confined space in the SnOx NP-s. The catalyst exhibits a significant increase in CO2RR versus hydrogen evolution selectivity by a factor of approximate to 5 with 20% higher formate selectivity relative to pristine SnO2 NPs at -1.2 V-RHE. Density functional theory calculations and cation-size-dependent experiments indicate that this is attributable to a gap-stabilization of the rate-limiting *OCHO and *COOH intermediates, the formation of which is driven by the interfacial electric field. Moreover, the SnOx NP-s exhibits stable performance during CO2RR over 50 h. These results highlight the potential of controlled atomic spaces in directing electrochemical reaction selectivity and the design of highly optimized catalytic materials.-
dc.languageEnglish-
dc.publisherJohn Wiley & Sons Ltd.-
dc.titleDesign of less than 1 nm Scale Spaces on SnO2 Nanoparticles for High-Performance Electrochemical CO2 Reduction-
dc.typeArticle-
dc.identifier.doi10.1002/adfm.202107349-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAdvanced Functional Materials, v.32, no.8, pp.1 - 10-
dc.citation.titleAdvanced Functional Materials-
dc.citation.volume32-
dc.citation.number8-
dc.citation.startPage1-
dc.citation.endPage10-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000710100000001-
dc.identifier.scopusid2-s2.0-85119376329-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusCARBON-DIOXIDE-
dc.subject.keywordPlusFORMIC-ACID-
dc.subject.keywordPlusENHANCED ACTIVITY-
dc.subject.keywordPlusGRAIN-BOUNDARIES-
dc.subject.keywordPlusMESOPOROUS SNO2-
dc.subject.keywordPlusHIGH-EFFICIENCY-
dc.subject.keywordPlusLIQUID FUEL-
dc.subject.keywordPlusELECTROREDUCTION-
dc.subject.keywordPlusSELECTIVITY-
dc.subject.keywordPlusELECTRODES-
dc.subject.keywordAuthor3D tomography-
dc.subject.keywordAuthordensity functional theory-
dc.subject.keywordAuthorelectrochemical carbon dioxide reduction-
dc.subject.keywordAuthorspace confinement-
dc.subject.keywordAuthorsub-nanospacing-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE