Full metadata record

DC Field Value Language
dc.contributor.authorNam, Seungjin-
dc.contributor.authorKim, Sang Jun-
dc.contributor.authorKim, Moon J.-
dc.contributor.authorQuevedo-Lopez, Manuel-
dc.contributor.authorHwang, Jun Yeon-
dc.contributor.authorPark, Eun Soo-
dc.contributor.authorChoi, Hyunjoo-
dc.date.accessioned2024-01-19T13:02:10Z-
dc.date.available2024-01-19T13:02:10Z-
dc.date.created2022-01-25-
dc.date.issued2022-01-
dc.identifier.issn1359-6462-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/115881-
dc.description.abstractHerein, CoCrFeNi high-entropy alloy thin films were successfully synthesized via solid-state alloying from Al-6(CoCrFeNi)(94) multilayer films, forming a CoCrFeNi-based solid solution phase with a face-centered cubic structure by optimizing Al content to prevent any oxide reaction. The microstructural and phase evolutions in the multilayer films were systematically investigated to understand the alloying behavior. Interestingly, it can be evaluated that the alloying elements could be diffused into layers, even those with nonconnected interfaces, through the grain boundaries owing to the presence of nanostructured columnar grains. Thus, these grain boundaries act as a network of diffusion paths for alloying elemental atoms to be homogenized throughout multilayer films and form the reactive phase regardless of the thermodynamic and kinetic prediction. Consequently, grain boundary diffusion-assisted solid-state alloying can be used to synthesize high-entropy alloy thin films for various multicomponent alloy systems by only controlling the layer thickness in multilayer films. (C) 2021 The Author(s). Published by Elsevier Ltd on behalf of Acta Materialia Inc.-
dc.languageEnglish-
dc.publisherPergamon Press Ltd.-
dc.titleSynthesis of high-entropy alloy thin films via grain boundary diffusion-assisted solid-state alloying-
dc.typeArticle-
dc.identifier.doi10.1016/j.scriptamat.2021.114302-
dc.description.journalClass1-
dc.identifier.bibliographicCitationScripta Materialia, v.207-
dc.citation.titleScripta Materialia-
dc.citation.volume207-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000707613400011-
dc.identifier.scopusid2-s2.0-85116582578-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryMetallurgy & Metallurgical Engineering-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaMetallurgy & Metallurgical Engineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusAL ADDITION-
dc.subject.keywordPlusMICROSTRUCTURES-
dc.subject.keywordAuthorMultilayer thin film-
dc.subject.keywordAuthorSolid-state alloying-
dc.subject.keywordAuthorGrain boundary diffusion-
dc.subject.keywordAuthorHigh-entropy alloy film-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE