Full metadata record

DC Field Value Language
dc.contributor.authorKim, Tae Soo-
dc.contributor.authorKim, Hyo Jin-
dc.contributor.authorHan, Jae-Hoon-
dc.contributor.authorChoi, Won Jun-
dc.contributor.authorYu, Ki Jun-
dc.date.accessioned2024-01-19T13:02:16Z-
dc.date.available2024-01-19T13:02:16Z-
dc.date.created2022-01-25-
dc.date.issued2022-01-
dc.identifier.issn2574-0962-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/115886-
dc.description.abstractThe lifetime and stability of flexible photovoltaic (PV) devices are crucial factors in the production of sustainable and eco-friendly energy. However, flexible PV devices are usually constructed with a thin active material integrated onto a soft substrate, the surfaces of which are prone to moisture and heat damage, making devices unreliable in terms of their lifetime and stability. Here, we built flexible InGaP/GaAs tandem solar cells with an ultrathin thermally grown silicon dioxide layer as a permanent water barrier and an antireflection coating (ARC). By transferring an ultrathin thermally grown silicon dioxide onto flexible InGaP/GaAs tandem solar cells, there was no performance degradation even after soaking the solar cells in water at 70 degrees C for 10 days. Furthermore, the energy conversion efficiency of the solar cell with a thermally grown silicon dioxide layer was improved by 2.24% due to antirefletion effect compared with that of the solar cells without the silicon dioxide layer. Such device technology establishes a stable energy source not only for vehicles, satellites, and drones exposed to harsh environments but also for underwater operating systems and sensors.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.titleFlexible InGaP/GaAs Tandem Solar Cells Encapsulated with Ultrathin Thermally Grown Silicon Dioxide as a Permanent Water Barrier and an Antireflection Coating-
dc.typeArticle-
dc.identifier.doi10.1021/acsaem.1c02764-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAcs Applied Energy Materials, v.5, no.1, pp.227 - 233-
dc.citation.titleAcs Applied Energy Materials-
dc.citation.volume5-
dc.citation.number1-
dc.citation.startPage227-
dc.citation.endPage233-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000736859600001-
dc.identifier.scopusid2-s2.0-85122581867-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle; Early Access-
dc.subject.keywordPlusBIOFLUID BARRIERS-
dc.subject.keywordPlusDEGRADATION-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusSTABILITY-
dc.subject.keywordPlusLAYERS-
dc.subject.keywordPlusFILMS-
dc.subject.keywordAuthorflexible photovoltaics-
dc.subject.keywordAuthorwater barrier-
dc.subject.keywordAuthortransferring layer-
dc.subject.keywordAuthorcompound semiconductors-
dc.subject.keywordAuthorsilicon dioxide-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE