Full metadata record

DC Field Value Language
dc.contributor.authorBae, Jaehyeong-
dc.contributor.authorKim, Min Soo-
dc.contributor.authorOh, Taegon-
dc.contributor.authorSuh, Bong Lim-
dc.contributor.authorYun, Tae Gwang-
dc.contributor.authorLee, seung jun-
dc.contributor.authorHur, Kahyun-
dc.contributor.authorGogotsi, Yury-
dc.contributor.authorKoo, Chong Min-
dc.contributor.authorKim, Il-Doo-
dc.date.accessioned2024-01-19T13:02:19Z-
dc.date.available2024-01-19T13:02:19Z-
dc.date.created2022-01-25-
dc.date.issued2022-01-
dc.identifier.issn1754-5692-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/115889-
dc.description.abstractNano-hydroelectric technology utilizes hydraulic flow through electronically conducting nanomaterials to generate electricity in a simple, renewable, ubiquitous, and environmentally friendly manner. To date, several designs of nano-hydroelectric devices have been devised to maximize the electrokinetic interactions between water molecules and nanomaterials. However, the reported power generation of the state-of-the-art nano-hydroelectric generators is not sufficient for practical use, as tens of thousands of units were required to operate low-power electronics on a mW scale. Here, we utilize titanium carbide (Ti3C2Tx) MXene nanosheets, which have advantageous properties including metal-like conductivity and hydrophilicity, to facilitate the electrokinetic conversion of the transpiration-driven electrokinetic power generator (TEPG) with a remarkably improved energy generation efficiency compared to that of carbon-based TEPG. The Ti3C2Tx MXene-based TEPG delivered a high pseudo-streaming current of 120 mu A by the fast capillary flow promoted by MXene sheets coated on cotton fabric. The strong cationic affinity of Ti3C2Tx enables the generator to achieve an output of 0.68 V and 2.73 mA when NaCl solution is applied. Moreover, incorporation of a conducting polymer (i.e., Ti3C2Tx/polyaniline composite) enhanced the ionic diffusivity while maintaining the electrical network of Ti3C2Tx. The optimized Ti3C2Tx/polyaniline composite TEPG generated a maximum voltage of 0.54 V, a current of 8.2 mA, and a specific power density of 30.9 mW cm(-3), which was sufficient to successfully charge a commercial Li-ion battery as well as low-power electronics and devices with a volume of 6.72 cm(3).-
dc.languageEnglish-
dc.publisherRoyal Society of Chemistry-
dc.titleTowards Watt-scale hydroelectric energy harvesting by Ti3C2Tx-based transpiration-driven electrokinetic power generators-
dc.typeArticle-
dc.identifier.doi10.1039/d1ee00859e-
dc.description.journalClass1-
dc.identifier.bibliographicCitationEnergy & Environmental Science, v.15, no.1, pp.123 - 135-
dc.citation.titleEnergy & Environmental Science-
dc.citation.volume15-
dc.citation.number1-
dc.citation.startPage123-
dc.citation.endPage135-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000710487100001-
dc.identifier.scopusid2-s2.0-85123021669-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalWebOfScienceCategoryEnvironmental Sciences-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaEnvironmental Sciences & Ecology-
dc.type.docTypeArticle-
dc.subject.keywordPlusGRAPHENE OXIDE-
dc.subject.keywordPlusMXENE-
dc.subject.keywordPlusELECTRODE-
dc.subject.keywordPlusINTERCALATION-
dc.subject.keywordPlusDISSOLUTION-
dc.subject.keywordPlusELECTRICITY-
dc.subject.keywordPlusCELLULOSE-
dc.subject.keywordPlusMAX-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE