Full metadata record

DC Field Value Language
dc.contributor.authorLee min woo-
dc.contributor.authorJang, Namseon-
dc.contributor.authorChoi, Nara-
dc.contributor.authorYang, Sungwook-
dc.contributor.authorJeong, Jinwoo-
dc.contributor.authorNam, Hyeong Soo-
dc.contributor.authorOh, Sang-Rok-
dc.contributor.authorKim, Keehoon-
dc.contributor.authorHwang, Donghyun-
dc.date.accessioned2024-01-19T13:02:20Z-
dc.date.available2024-01-19T13:02:20Z-
dc.date.created2022-01-25-
dc.date.issued2022-01-
dc.identifier.issn2198-3844-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/115890-
dc.description.abstractIn vivo volumetric imaging of the microstructural changes of peripheral nerves with an inserted electrode could be key for solving the chronic implantation failure of an intra-neural interface necessary to provide amputated patients with natural motion and sensation. Thus far, no imaging devices can provide a cellular-level three-dimensional (3D) structural images of a peripheral nerve in vivo. In this study, an optical coherence tomography-based peripheral nerve imaging platform that employs a newly proposed depth of focus extension technique is reported. A point spread function with the finest transverse resolution of 1.27 mu m enables the cellular-level volumetric visualization of the metal wire and microstructural changes in a rat sciatic nerve with the metal wire inserted in vivo. Further, the feasibility of applying the imaging platform to large animals for a preclinical study is confirmed through in vivo rabbit sciatic nerve imaging. It is expected that new possibilities for the successful chronic implantation of an intra-neural interface will open up by providing the 3D microstructural changes of nerves around the inserted electrode.-
dc.languageEnglish-
dc.publisherWiley-VCH Verlag-
dc.titleIn Vivo Cellular-Level 3D Imaging of Peripheral Nerves Using a Dual-Focusing Technique for Intra-Neural Interface Implantation-
dc.typeArticle-
dc.identifier.doi10.1002/advs.202102876-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAdvanced Science, v.9, no.3-
dc.citation.titleAdvanced Science-
dc.citation.volume9-
dc.citation.number3-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000723557700001-
dc.identifier.scopusid2-s2.0-85120169022-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusOPTICAL COHERENCE TOMOGRAPHY-
dc.subject.keywordPlusMINIATURE 2-PHOTON MICROSCOPY-
dc.subject.keywordPlusDOMAIN MODE-LOCKING-
dc.subject.keywordPlusEXTENDED DEPTH-
dc.subject.keywordPlusSWEPT LASER-
dc.subject.keywordPlusRANGE-
dc.subject.keywordPlusARRAY-
dc.subject.keywordAuthorextending depth of focus-
dc.subject.keywordAuthorintra-neural interface-
dc.subject.keywordAuthorneuroprosthesis-
dc.subject.keywordAuthoroptical coherence tomography-
dc.subject.keywordAuthorperipheral nerve-
Appears in Collections:
KIST Article > 2022
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE