Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jo, H. | - |
dc.contributor.author | Kim, J.K. | - |
dc.contributor.author | Kim, J. | - |
dc.contributor.author | Seong, T.-Y. | - |
dc.contributor.author | Son, H.J. | - |
dc.contributor.author | Jeong, J.-H. | - |
dc.contributor.author | Yu, H. | - |
dc.date.accessioned | 2024-01-19T13:03:00Z | - |
dc.date.available | 2024-01-19T13:03:00Z | - |
dc.date.created | 2022-01-28 | - |
dc.date.issued | 2021-12-27 | - |
dc.identifier.issn | 2574-0962 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/115929 | - |
dc.description.abstract | Due to the excitonic nature, colloidal PbS quantum-dot solar cells have suffered from lower photocurrent densities than expected from the absorber band gap. The heterojunction between solution-processed ZnO and PbS quantum-dots has been predominantly explored for photovoltaic applications. However, the deeper conduction band minimum of typical PbS quantum-dots than that of solution-processed ZnO imposes a high electron barrier, limiting the short-circuit current densities of the resulting solar cells mostly below 30 mA/cm2. Here, we report that atomic layer deposition (ALD) of ZnO buffer at a low temperature can favor the interfacial band alignment and boost the photocurrent density over 35 mA/cm2 at PbS quantum-dot band gap of 1.18 eV. From our band structure analysis, the electron barrier with ALD-ZnO can be 0.55 eV lower compared to that with sol-gel ZnO. Furthermore, photoactivation of shallow gap states formed by hydroxyl species in ALD-ZnO induces band bending and efficient electron tunneling from PbS to ZnO. Due to the improved band alignment, the device with ALD-ZnO exhibits a significantly enhanced lifetime compared to that with sol-gel ZnO upon constant illumination at 1-sun. ? 2021 American Chemical Society. | - |
dc.language | English | - |
dc.publisher | American Chemical Society | - |
dc.title | Unprecedentedly Large Photocurrents in Colloidal PbS Quantum-Dot Solar Cells Enabled by Atomic Layer Deposition of Zinc Oxide Electron Buffer Layer | - |
dc.type | Article | - |
dc.identifier.doi | 10.1021/acsaem.1c02511 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | ACS Applied Energy Materials, v.4, no.12, pp.13776 - 13784 | - |
dc.citation.title | ACS Applied Energy Materials | - |
dc.citation.volume | 4 | - |
dc.citation.number | 12 | - |
dc.citation.startPage | 13776 | - |
dc.citation.endPage | 13784 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000756324400044 | - |
dc.identifier.scopusid | 2-s2.0-85120321586 | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
dc.relation.journalWebOfScienceCategory | Energy & Fuels | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Energy & Fuels | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | PHOTOVOLTAICS | - |
dc.subject.keywordPlus | TEMPERATURE | - |
dc.subject.keywordPlus | PERFORMANCE | - |
dc.subject.keywordPlus | ZNO | - |
dc.subject.keywordAuthor | atomic layer deposition | - |
dc.subject.keywordAuthor | colloidal quantum dot | - |
dc.subject.keywordAuthor | photoactivation | - |
dc.subject.keywordAuthor | solar cell | - |
dc.subject.keywordAuthor | zinc oxide | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.