Full metadata record

DC Field Value Language
dc.contributor.authorJo, H.-
dc.contributor.authorKim, J.K.-
dc.contributor.authorKim, J.-
dc.contributor.authorSeong, T.-Y.-
dc.contributor.authorSon, H.J.-
dc.contributor.authorJeong, J.-H.-
dc.contributor.authorYu, H.-
dc.date.accessioned2024-01-19T13:03:00Z-
dc.date.available2024-01-19T13:03:00Z-
dc.date.created2022-01-28-
dc.date.issued2021-12-27-
dc.identifier.issn2574-0962-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/115929-
dc.description.abstractDue to the excitonic nature, colloidal PbS quantum-dot solar cells have suffered from lower photocurrent densities than expected from the absorber band gap. The heterojunction between solution-processed ZnO and PbS quantum-dots has been predominantly explored for photovoltaic applications. However, the deeper conduction band minimum of typical PbS quantum-dots than that of solution-processed ZnO imposes a high electron barrier, limiting the short-circuit current densities of the resulting solar cells mostly below 30 mA/cm2. Here, we report that atomic layer deposition (ALD) of ZnO buffer at a low temperature can favor the interfacial band alignment and boost the photocurrent density over 35 mA/cm2 at PbS quantum-dot band gap of 1.18 eV. From our band structure analysis, the electron barrier with ALD-ZnO can be 0.55 eV lower compared to that with sol-gel ZnO. Furthermore, photoactivation of shallow gap states formed by hydroxyl species in ALD-ZnO induces band bending and efficient electron tunneling from PbS to ZnO. Due to the improved band alignment, the device with ALD-ZnO exhibits a significantly enhanced lifetime compared to that with sol-gel ZnO upon constant illumination at 1-sun. ? 2021 American Chemical Society.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titleUnprecedentedly Large Photocurrents in Colloidal PbS Quantum-Dot Solar Cells Enabled by Atomic Layer Deposition of Zinc Oxide Electron Buffer Layer-
dc.typeArticle-
dc.identifier.doi10.1021/acsaem.1c02511-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Applied Energy Materials, v.4, no.12, pp.13776 - 13784-
dc.citation.titleACS Applied Energy Materials-
dc.citation.volume4-
dc.citation.number12-
dc.citation.startPage13776-
dc.citation.endPage13784-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000756324400044-
dc.identifier.scopusid2-s2.0-85120321586-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusPHOTOVOLTAICS-
dc.subject.keywordPlusTEMPERATURE-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusZNO-
dc.subject.keywordAuthoratomic layer deposition-
dc.subject.keywordAuthorcolloidal quantum dot-
dc.subject.keywordAuthorphotoactivation-
dc.subject.keywordAuthorsolar cell-
dc.subject.keywordAuthorzinc oxide-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE