Full metadata record

DC Field Value Language
dc.contributor.authorChoi, D.-
dc.contributor.authorJung, J.Y.-
dc.contributor.authorLee, M.J.-
dc.contributor.authorKim, S.-H.-
dc.contributor.authorLee, S.-
dc.contributor.authorLee, D.W.-
dc.contributor.authorKim, D.-G.-
dc.contributor.authorKim, N.D.-
dc.contributor.authorLee, K.-S.-
dc.contributor.authorKim, P.-
dc.contributor.authorYoo, S.J.-
dc.date.accessioned2024-01-19T13:03:02Z-
dc.date.available2024-01-19T13:03:02Z-
dc.date.created2022-01-10-
dc.date.issued2021-12-17-
dc.identifier.issn2155-5435-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/115931-
dc.description.abstractIn Pt-based alloy structures, selective leaching out of the non-Pt metal component (known as dealloying)improves catalytic activity during operation due to an increase in the electrochemically active surface area. This indicates that in Pt-based alloy structures, an electrochemical stimulus induces structural change, and the non-Pt component plays an important role in determining the catalytic performance. In this study, we prepared highly active and durable Pd@Cu@Pt core-shell catalysts for an acidic oxygen reduction reaction by a facile method and elucidated the correlation between performance improvement and repetitive potential cycling beyond a simple dealloying effect. Electrochemical activation induces the formation of a localized PtCu alloy, which is strongly correlated with excellent catalytic activity and durability (mass activity after durability test: 2.6 A mg-1Pt), on the surface and subsurface via atomic rearrangement. The origin of such catalytic activity and durability is determined by synchrotron X-ray spectroscopy, electrochemical analysis, and density functional theory calculations. ?-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titleAtomic Rearrangement in Core-Shell Catalysts Induced by Electrochemical Activation for Favorable Oxygen Reduction in Acid Electrolytes-
dc.typeArticle-
dc.identifier.doi10.1021/acscatal.1c03879-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Catalysis, v.11, no.24, pp.15098 - 15109-
dc.citation.titleACS Catalysis-
dc.citation.volume11-
dc.citation.number24-
dc.citation.startPage15098-
dc.citation.endPage15109-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000751835200041-
dc.identifier.scopusid2-s2.0-85120897804-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalResearchAreaChemistry-
dc.type.docTypeArticle-
dc.subject.keywordPlusPLATINUM-MONOLAYER-
dc.subject.keywordPlusELECTROCATALYSTS-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusSTABILITY-
dc.subject.keywordPlusEFFICIENT-
dc.subject.keywordPlusSTRAIN-
dc.subject.keywordPlusALLOYS-
dc.subject.keywordPlusPD/C-
dc.subject.keywordAuthoratomic rearrangement-
dc.subject.keywordAuthorelectrochemical activation-
dc.subject.keywordAuthorgreen synthesis-
dc.subject.keywordAuthorlocalized alloy formation-
dc.subject.keywordAuthoroxygen reduction reaction-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE