Full metadata record

DC Field Value Language
dc.contributor.authorCha, Junyoung-
dc.contributor.authorPark, Yongha-
dc.contributor.authorBrigljevic, Boris-
dc.contributor.authorLee, Boreum-
dc.contributor.authorLim, Dongjun-
dc.contributor.authorLee, Taeho-
dc.contributor.authorJeong, Hyangsoo-
dc.contributor.authorKim, Yongmin-
dc.contributor.authorSohn, Hyuntae-
dc.contributor.authorMikulcic, Hrvoje-
dc.contributor.authorLee, Kyung Moon-
dc.contributor.authorNam, Dong Hoon-
dc.contributor.authorLee, Ki Bong-
dc.contributor.authorLim, Hankwon-
dc.contributor.authorYoon, Chang Won-
dc.contributor.authorJo, Young Suk-
dc.date.accessioned2024-01-19T13:03:49Z-
dc.date.available2024-01-19T13:03:49Z-
dc.date.created2022-01-25-
dc.date.issued2021-12-
dc.identifier.issn1364-0321-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/115977-
dc.description.abstractThis study comprehensively investigates hydrogen production from green ammonia reforming, including synthesis of catalysts, reactor development, process integration, and techno-economic analysis. In-house developed Ru/La-Al2O3 pellet catalyst having perovskite structure showed high catalytic activity of 2827 h(-1) at 450 degrees C and stability over 6700 h at 550 degrees C, exceeding the performance of the majority of powder catalysts reported in the literature. A scalable 12-faceted reactor adopting the as-produced catalyst was designed to enhance heat transfer, producing over 66 L min(-1) of hydrogen with state-of-the-art ammonia reforming efficiency of 83.6 %. Near-zero CO2 emission of hydrogen extraction from green ammonia was demonstrated by-product gas recirculation as a combustion heat source. A techno-economic assessment was conducted for system scales from 10 kW to 10 MW, demonstrating the effect of reduced minimum hydrogen selling prices from 7.03 USD kg(-1) at small modular scales to 3.98 USD kg(-1) at larger industrial scales. Sensitivity analyses indicate that hydrogen selling prices may reduce even further (up to 50 %). The suggested hydrogen production route from green NH3 demonstrates superior CO2 reduction ranging from 78 % to 95 % in kg CO2 (kg H-2)(-1) compared to biomass gasification and steam methane reforming. These findings can be used as a basis for following economic and policy studies to further validate the effectiveness of the suggested system and process for H-2 production from NH3.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleAn efficient process for sustainable and scalable hydrogen production from green ammonia-
dc.typeArticle-
dc.identifier.doi10.1016/j.rser.2021.111562-
dc.description.journalClass1-
dc.identifier.bibliographicCitationRenewable and Sustainable Energy Reviews, v.152-
dc.citation.titleRenewable and Sustainable Energy Reviews-
dc.citation.volume152-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000708524800001-
dc.identifier.scopusid2-s2.0-85114718440-
dc.relation.journalWebOfScienceCategoryGreen & Sustainable Science & Technology-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.type.docTypeArticle-
dc.subject.keywordPlusTECHNOECONOMIC ANALYSIS-
dc.subject.keywordPlusH-2 PRODUCTION-
dc.subject.keywordPlusDECOMPOSITION-
dc.subject.keywordPlusCATALYSTS-
dc.subject.keywordPlusENERGY-
dc.subject.keywordPlusREACTOR-
dc.subject.keywordPlusCARBON-
dc.subject.keywordPlusRU-
dc.subject.keywordPlusOPTIMIZATION-
dc.subject.keywordPlusGENERATION-
dc.subject.keywordAuthorAmmonia reforming-
dc.subject.keywordAuthorH-2 production-
dc.subject.keywordAuthorEfficiency analysis-
dc.subject.keywordAuthorProcess simulation-
dc.subject.keywordAuthorEconomic analysis-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE