Full metadata record

DC Field Value Language
dc.contributor.authorDaud, Siti Mariam-
dc.contributor.authorAbu Bakar, Mimi Hani-
dc.contributor.authorWan Daud, Wan Ramli-
dc.contributor.authorKim, Byung Hong-
dc.contributor.authorMd Jahim, Jamaliah-
dc.contributor.authorMuchtar, Andanastuti-
dc.contributor.authorSomalu, Mahendra Roa-
dc.contributor.authorLee, Pak Hoe-
dc.contributor.authorAbdul, Peer Mohamed-
dc.date.accessioned2024-01-19T13:03:57Z-
dc.date.available2024-01-19T13:03:57Z-
dc.date.created2022-01-25-
dc.date.issued2021-12-
dc.identifier.issn2050-0505-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/115984-
dc.description.abstractA proton exchange membrane (PEM) is one of the most critical and expensive components in a dual-chamber microbial fuel cell (MFC) that separates the anode and cathode chambers. The novel macroporous kaolin earthenware coated with polybenzimidazole (NKE-PBI) fabricated in this study could become an alternative to PEM membranes. Briefly, PBI powder was dissolved in dimethylacetamide. Thereafter, NKE was fabricated at different porosities (10%, 20%, and 30%) using different starch powder volumes, which acted as pore-forming agents. The NKE-PBI with 30 vol% starch powder content produced the highest power output of 2450 +/- 25 mW m(-2) (10.50 A m(-2)) and internal resistance of 71 +/- 19 omega under batch mode operation. The MFC-PEM reactor generated the lowest power output at the highest internal resistance of up to 1300 +/- 15 mW m(-2) (3.7 A m(-2)) and 313 +/- 16 omega, respectively. In this study, the nonselective porous NKE coated with PBI membranes improved proton conduction activity and displayed comparable power performance with that of Nafion 117 in a dual-chambered MFC. Therefore, a porous earthenware membrane coated with a proton conductor could become a potential separator in a scaled-up MFC system for commercialization.-
dc.languageEnglish-
dc.publisherWILEY-
dc.titleImprovement of microbial fuel cell performance using novel kaolin earthenware membrane coated with a polybenzimidazole layer-
dc.typeArticle-
dc.identifier.doi10.1002/ese3.988-
dc.description.journalClass1-
dc.identifier.bibliographicCitationENERGY SCIENCE & ENGINEERING, v.9, no.12, pp.2342 - 2353-
dc.citation.titleENERGY SCIENCE & ENGINEERING-
dc.citation.volume9-
dc.citation.number12-
dc.citation.startPage2342-
dc.citation.endPage2353-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000705534700001-
dc.identifier.scopusid2-s2.0-85116593145-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.type.docTypeArticle-
dc.subject.keywordPlusPROTON-EXCHANGE MEMBRANE-
dc.subject.keywordPlusENHANCED POWER PRODUCTION-
dc.subject.keywordPlusELECTRICITY-GENERATION-
dc.subject.keywordPlusCERAMIC MEMBRANES-
dc.subject.keywordPlusCATION-EXCHANGE-
dc.subject.keywordPlusTRANSPORT-
dc.subject.keywordPlusSEPARATORS-
dc.subject.keywordPlusEFFICIENT-
dc.subject.keywordPlusELECTRODE-
dc.subject.keywordPlusOXIDE-
dc.subject.keywordAuthormicrobial fuel cell technology-
dc.subject.keywordAuthornovel kaolin earthenware-
dc.subject.keywordAuthorpolybenzimidazole-
dc.subject.keywordAuthorproton conductor-
dc.subject.keywordAuthorproton exchange membrane-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE