Full metadata record

DC Field Value Language
dc.contributor.authorKwon, J.-H.-
dc.contributor.authorN., Chaudhari K.-
dc.contributor.authorCoy, E.-
dc.contributor.authorSeo, J.H.-
dc.contributor.authorAhn, S.J.-
dc.contributor.authorLee, Y.-H.-
dc.contributor.authorLee, S.-
dc.contributor.authorCho, Y.C.-
dc.contributor.authorChoi, O.-
dc.contributor.authorLee, K.S.-
dc.contributor.authorSon, D.I.-
dc.contributor.authorKim, Y.-
dc.date.accessioned2024-01-19T13:04:06Z-
dc.date.available2024-01-19T13:04:06Z-
dc.date.created2022-01-10-
dc.date.issued2021-12-
dc.identifier.issn2168-0485-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/115994-
dc.description.abstractConversion reaction-based transition metal oxides have been considered as advanced anode materials for lithium batteries because of their high storage capacities; however, the initial lithiation/delithiation mechanism remains poorly understood. In this study, we synthesized single-crystalline spindle-type mesoporous Fe2O3 (MS-Fe2O3), which contained a high fraction of textural porosity that appears as a unique tunnel structure. The MS-Fe2O3 electrode exhibited a remarkably high initial Coulombic efficiency of 85.4% and stable cycling performance with a specific capacity of 1250 mA h g-1 after 100 cycles. During the lithiation process, the initial α-Fe2O3 phase was transformed to nanograin-Fe embedded in the Li2O matrix, while subsequent delithiation changed the Fe phase into γ-Fe2O3. Despite the initial irreversible phase conversion, a reversible electrochemical reaction (Fe3+ → Fe0 → Fe3+) was retained in the first cycle, leading to the high ICE and discharge capacity. This study provides crucial information on the lithiation/delithiation mechanism of transition metal oxides and benefits the design of advanced materials for lithium batteries. ? 2021 American Chemical Society.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titleReversible Conversion Reactions of Mesoporous Iron Oxide with High Initial Coulombic Efficiency for Lithium-Ion Batteries-
dc.typeArticle-
dc.identifier.doi10.1021/acssuschemeng.1c05335-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Sustainable Chemistry & Engineering, v.9, no.49, pp.16627 - 16636-
dc.citation.titleACS Sustainable Chemistry & Engineering-
dc.citation.volume9-
dc.citation.number49-
dc.citation.startPage16627-
dc.citation.endPage16636-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000753961000010-
dc.identifier.scopusid2-s2.0-85120320458-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryGreen & Sustainable Science & Technology-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusHIGH-RATE CAPABILITY-
dc.subject.keywordPlusANODE MATERIAL-
dc.subject.keywordPlus3-DIMENSIONAL GRAPHENE-
dc.subject.keywordPlusALPHA-FE2O3 NANOTUBES-
dc.subject.keywordPlusSTRUCTURAL EVOLUTION-
dc.subject.keywordPlusCARBON NANOTUBES-
dc.subject.keywordPlusHIGH-CAPACITY-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusFE2O3-
dc.subject.keywordPlusSURFACE-
dc.subject.keywordAuthorconversion reaction-
dc.subject.keywordAuthorCoulombic efficiency-
dc.subject.keywordAuthorlithium-ion battery-
dc.subject.keywordAuthormesoporous iron oxide-
dc.subject.keywordAuthormicrowave synthesis-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE