Full metadata record

DC Field Value Language
dc.contributor.authorHan, Man Ho-
dc.contributor.authorPin, Min Wook-
dc.contributor.authorKoh, Jai Hyun-
dc.contributor.authorPark, Jong Hyeok-
dc.contributor.authorKim, Jihyun-
dc.contributor.authorMin, Byoung Koun-
dc.contributor.authorLee, Woong Hee-
dc.contributor.authorOh, Hyung-Suk-
dc.date.accessioned2024-01-19T13:04:27Z-
dc.date.available2024-01-19T13:04:27Z-
dc.date.created2022-01-10-
dc.date.issued2021-12-
dc.identifier.issn2050-7488-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/116015-
dc.description.abstractThe sulfurization of transition metals is a promising method for improving their catalytic activities in the oxygen evolution reaction (OER). However, experimental studies regarding the effects of undissolved, remaining S are rare. Herein, we experimentally elucidate the influence of S in an Ni-based material in enhancing the OER performance. The Fe- and Co-doped sulfurized Ni catalyst prepared using a simple impregnation method with heating under an H2S atmosphere exhibited superior OER activity (271.2 mV at 10 mA cm(-2)) compared to that of the non-sulfurized analogues while S remained. In situ/operando Raman and X-ray absorption spectroscopy revealed that S at the outermost surface dissolved and accelerated the regeneration of the NiOOH phase during the OER. The remaining S increased the Ni-O bond length of the regenerated NiOOH, thus boosting the OER catalytic activity. These findings provide an understanding of sulfurized catalysts and new perspectives in the development of materials for use in the OER.-
dc.languageEnglish-
dc.publisherRoyal Society of Chemistry-
dc.titleImproving the oxygen evolution reaction using electronic structure modulation of sulfur-retaining nickel-based electrocatalysts-
dc.typeArticle-
dc.identifier.doi10.1039/d1ta07591h-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJournal of Materials Chemistry A, v.9, no.47, pp.27034 - 27040-
dc.citation.titleJournal of Materials Chemistry A-
dc.citation.volume9-
dc.citation.number47-
dc.citation.startPage27034-
dc.citation.endPage27040-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000722718500001-
dc.identifier.scopusid2-s2.0-85120960713-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusCATALYTIC-ACTIVITY-
dc.subject.keywordPlusTHIN-FILMS-
dc.subject.keywordPlusHYDROXIDE-
dc.subject.keywordPlusSULFIDE-
dc.subject.keywordPlusFOAM-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusPHOSPHATE-
dc.subject.keywordPlusEFFICIENT-
dc.subject.keywordAuthorOxygen evolution reaction (OER)-
dc.subject.keywordAuthorNiFeCo-
dc.subject.keywordAuthorSulfurization-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE