Full metadata record

DC Field Value Language
dc.contributor.authorSik, Choi M.-
dc.contributor.authorYoung, Kim M.-
dc.contributor.authorMirzaei, A.-
dc.contributor.authorKim, H.-S.-
dc.contributor.authorKim, S.-I.-
dc.contributor.authorBaek, S.-H.-
dc.contributor.authorChun, Dong Won-
dc.contributor.authorJin, C.-
dc.contributor.authorHyoung, Lee K.-
dc.date.accessioned2024-01-19T13:04:38Z-
dc.date.available2024-01-19T13:04:38Z-
dc.date.created2021-10-21-
dc.date.issued2021-12-
dc.identifier.issn0169-4332-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/116026-
dc.description.abstractIn this study, we synthesized porous (porosity: ~16%, average pore size: ~60 nm) ZnO nanosheets (thickness: ~80 nm) using a conventional solvothermal method to investigate NO2 gas sensing properties. Porous ZnO nanosheets triggered the detection of NO2 gas with high sensitivity. Responses of 2.93 ? 0.5 ppm and 74.68 ? 10 ppm NO2 gas at 200 °C were observed in the porous ZnO nanosheet-based gas sensor. In addition, improved sensing properties with high selectivity to NO2 gas, reasonable stability, and high response even in the presence of water vapor molecules were obtained. We found that the enhanced NO2 gas response of the porous ZnO nanosheet-based gas sensor was due to the synergetic effects of the high surface area, ZnO/ZnO homojunctions, and structural defects. We developed a highly sensitive NO2 gas sensor with improved reliability using morphologically engineered ZnO, which was prepared via a simple and scalable chemical-synthesis route. ? 2021 Elsevier B.V.-
dc.languageEnglish-
dc.publisherElsevier B.V.-
dc.titleSelective, sensitive, and stable NO2 gas sensor based on porous ZnO nanosheets-
dc.typeArticle-
dc.identifier.doi10.1016/j.apsusc.2021.150910-
dc.description.journalClass1-
dc.identifier.bibliographicCitationApplied Surface Science, v.568-
dc.citation.titleApplied Surface Science-
dc.citation.volume568-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000712302200006-
dc.identifier.scopusid2-s2.0-85113273961-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Coatings & Films-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusChemical sensors-
dc.subject.keywordPlusGas detectors-
dc.subject.keywordPlusNanosheets-
dc.subject.keywordPlusNitrogen oxides-
dc.subject.keywordPlusPore size-
dc.subject.keywordPlusZinc oxide-
dc.subject.keywordPlusGas sensing properties-
dc.subject.keywordPlusGas-sensors-
dc.subject.keywordPlusNO $-2$-
dc.subject.keywordPlusNO2 gas-
dc.subject.keywordPlusPorous ZnO nanosheet-
dc.subject.keywordPlusSensing mechanism-
dc.subject.keywordPlusSolvothermal method-
dc.subject.keywordPlusSynthesised-
dc.subject.keywordPlusZnO-
dc.subject.keywordPlusZnO nanosheets-
dc.subject.keywordPlusII-VI semiconductors-
dc.subject.keywordAuthorGas sensor-
dc.subject.keywordAuthorNO2 gas-
dc.subject.keywordAuthorPorous ZnO nanosheet-
dc.subject.keywordAuthorSensing mechanism-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE