Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Seo, Hyun seok | - |
dc.contributor.author | Yu, Lequan | - |
dc.contributor.author | Ren, Hongyi | - |
dc.contributor.author | Li, Xiaomeng | - |
dc.contributor.author | Shen, Liyue | - |
dc.contributor.author | Xing, Lei | - |
dc.date.accessioned | 2024-01-19T13:04:41Z | - |
dc.date.available | 2024-01-19T13:04:41Z | - |
dc.date.created | 2021-10-21 | - |
dc.date.issued | 2021-12 | - |
dc.identifier.issn | 0278-0062 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/116029 | - |
dc.description.abstract | Deep learning is becoming an indispensable tool for imaging applications, such as image segmentation, classification, and detection. In this work, we reformulate a standard deep learning problem into a new neural network architecture with multi-output channels, which reflects different facets of the objective, and apply the deep neural network to improve the performance of image segmentation. By adding one or more interrelated auxiliary-output channels, we impose an effective consistency regularization for the main task of pixelated classification (i.e., image segmentation). Specifically, multi-output-channel consistency regularization is realized by residual learning via additive paths that connect main-output channel and auxiliary-output channels in the network. The method is evaluated on the detection and delineation of lung and liver tumors with public data. The results clearly show that multi-output-channel consistency implemented by residual learning improves the standard deep neural network. The proposed framework is quite broad and should find widespread applications in various deep learning problems. IEEE | - |
dc.language | English | - |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | - |
dc.title | Deep Neural Network with Consistency Regularization of Multi-Output Channels for Improved Tumor Detection and Delineation | - |
dc.type | Article | - |
dc.identifier.doi | 10.1109/TMI.2021.3084748 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | IEEE Transactions on Medical Imaging, v.40, no.12, pp.3369 - 3378 | - |
dc.citation.title | IEEE Transactions on Medical Imaging | - |
dc.citation.volume | 40 | - |
dc.citation.number | 12 | - |
dc.citation.startPage | 3369 | - |
dc.citation.endPage | 3378 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000724511900011 | - |
dc.identifier.scopusid | 2-s2.0-85107193146 | - |
dc.relation.journalWebOfScienceCategory | Computer Science, Interdisciplinary Applications | - |
dc.relation.journalWebOfScienceCategory | Engineering, Biomedical | - |
dc.relation.journalWebOfScienceCategory | Engineering, Electrical & Electronic | - |
dc.relation.journalWebOfScienceCategory | Imaging Science & Photographic Technology | - |
dc.relation.journalWebOfScienceCategory | Radiology, Nuclear Medicine & Medical Imaging | - |
dc.relation.journalResearchArea | Computer Science | - |
dc.relation.journalResearchArea | Engineering | - |
dc.relation.journalResearchArea | Imaging Science & Photographic Technology | - |
dc.relation.journalResearchArea | Radiology, Nuclear Medicine & Medical Imaging | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | Deep neural networks | - |
dc.subject.keywordPlus | Image classification | - |
dc.subject.keywordPlus | Image enhancement | - |
dc.subject.keywordPlus | Image segmentation | - |
dc.subject.keywordPlus | Network architecture | - |
dc.subject.keywordPlus | Neural networks | - |
dc.subject.keywordPlus | Tumors | - |
dc.subject.keywordPlus | Auxiliary output | - |
dc.subject.keywordPlus | Imaging applications | - |
dc.subject.keywordPlus | Indispensable tools | - |
dc.subject.keywordPlus | Learning problem | - |
dc.subject.keywordPlus | Liver tumors | - |
dc.subject.keywordPlus | Multi-output | - |
dc.subject.keywordPlus | Output channels | - |
dc.subject.keywordPlus | Tumor detection | - |
dc.subject.keywordPlus | Deep learning | - |
dc.subject.keywordAuthor | Artificial intelligence | - |
dc.subject.keywordAuthor | Biomedical imaging | - |
dc.subject.keywordAuthor | cancer detection | - |
dc.subject.keywordAuthor | Feature extraction | - |
dc.subject.keywordAuthor | Image segmentation | - |
dc.subject.keywordAuthor | Neural networks | - |
dc.subject.keywordAuthor | neural networks | - |
dc.subject.keywordAuthor | regularization | - |
dc.subject.keywordAuthor | residual learning | - |
dc.subject.keywordAuthor | segmentation | - |
dc.subject.keywordAuthor | Task analysis | - |
dc.subject.keywordAuthor | Training | - |
dc.subject.keywordAuthor | Tumors | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.