Full metadata record

DC Field Value Language
dc.contributor.authorSeo, Hyun seok-
dc.contributor.authorYu, Lequan-
dc.contributor.authorRen, Hongyi-
dc.contributor.authorLi, Xiaomeng-
dc.contributor.authorShen, Liyue-
dc.contributor.authorXing, Lei-
dc.date.accessioned2024-01-19T13:04:41Z-
dc.date.available2024-01-19T13:04:41Z-
dc.date.created2021-10-21-
dc.date.issued2021-12-
dc.identifier.issn0278-0062-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/116029-
dc.description.abstractDeep learning is becoming an indispensable tool for imaging applications, such as image segmentation, classification, and detection. In this work, we reformulate a standard deep learning problem into a new neural network architecture with multi-output channels, which reflects different facets of the objective, and apply the deep neural network to improve the performance of image segmentation. By adding one or more interrelated auxiliary-output channels, we impose an effective consistency regularization for the main task of pixelated classification (i.e., image segmentation). Specifically, multi-output-channel consistency regularization is realized by residual learning via additive paths that connect main-output channel and auxiliary-output channels in the network. The method is evaluated on the detection and delineation of lung and liver tumors with public data. The results clearly show that multi-output-channel consistency implemented by residual learning improves the standard deep neural network. The proposed framework is quite broad and should find widespread applications in various deep learning problems. IEEE-
dc.languageEnglish-
dc.publisherInstitute of Electrical and Electronics Engineers Inc.-
dc.titleDeep Neural Network with Consistency Regularization of Multi-Output Channels for Improved Tumor Detection and Delineation-
dc.typeArticle-
dc.identifier.doi10.1109/TMI.2021.3084748-
dc.description.journalClass1-
dc.identifier.bibliographicCitationIEEE Transactions on Medical Imaging, v.40, no.12, pp.3369 - 3378-
dc.citation.titleIEEE Transactions on Medical Imaging-
dc.citation.volume40-
dc.citation.number12-
dc.citation.startPage3369-
dc.citation.endPage3378-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000724511900011-
dc.identifier.scopusid2-s2.0-85107193146-
dc.relation.journalWebOfScienceCategoryComputer Science, Interdisciplinary Applications-
dc.relation.journalWebOfScienceCategoryEngineering, Biomedical-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalWebOfScienceCategoryImaging Science & Photographic Technology-
dc.relation.journalWebOfScienceCategoryRadiology, Nuclear Medicine & Medical Imaging-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.relation.journalResearchAreaImaging Science & Photographic Technology-
dc.relation.journalResearchAreaRadiology, Nuclear Medicine & Medical Imaging-
dc.type.docTypeArticle-
dc.subject.keywordPlusDeep neural networks-
dc.subject.keywordPlusImage classification-
dc.subject.keywordPlusImage enhancement-
dc.subject.keywordPlusImage segmentation-
dc.subject.keywordPlusNetwork architecture-
dc.subject.keywordPlusNeural networks-
dc.subject.keywordPlusTumors-
dc.subject.keywordPlusAuxiliary output-
dc.subject.keywordPlusImaging applications-
dc.subject.keywordPlusIndispensable tools-
dc.subject.keywordPlusLearning problem-
dc.subject.keywordPlusLiver tumors-
dc.subject.keywordPlusMulti-output-
dc.subject.keywordPlusOutput channels-
dc.subject.keywordPlusTumor detection-
dc.subject.keywordPlusDeep learning-
dc.subject.keywordAuthorArtificial intelligence-
dc.subject.keywordAuthorBiomedical imaging-
dc.subject.keywordAuthorcancer detection-
dc.subject.keywordAuthorFeature extraction-
dc.subject.keywordAuthorImage segmentation-
dc.subject.keywordAuthorNeural networks-
dc.subject.keywordAuthorneural networks-
dc.subject.keywordAuthorregularization-
dc.subject.keywordAuthorresidual learning-
dc.subject.keywordAuthorsegmentation-
dc.subject.keywordAuthorTask analysis-
dc.subject.keywordAuthorTraining-
dc.subject.keywordAuthorTumors-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE