Full metadata record

DC Field Value Language
dc.contributor.authorPark, J.Y.-
dc.contributor.authorShim, Y.-
dc.contributor.authorDao, K.P.-
dc.contributor.authorLee, S.-G.-
dc.contributor.authorChoe, J.-
dc.contributor.authorLee, H.J.-
dc.contributor.authorLee, Y.-
dc.contributor.authorChoi, Y.-
dc.contributor.authorChang, J.H.-
dc.contributor.authorYoo, S.J.-
dc.contributor.authorAhn, C.W.-
dc.contributor.authorChang, W.-
dc.contributor.authorLee, C.-W.-
dc.contributor.authorYuk, J.M.-
dc.date.accessioned2024-01-19T13:30:29Z-
dc.date.available2024-01-19T13:30:29Z-
dc.date.created2022-01-10-
dc.date.issued2021-11-23-
dc.identifier.issn1936-0851-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/116117-
dc.description.abstractBinary metal sulfides have been explored as sodium storage materials owing to their high theoretical capacity and high stable cyclability. Nevertheless, their relative high charge voltage and relatively low practical capacity make them less attractive as an anode material. To resolve the problem, addition of alloying elements is considerable. Copper antimony sulfide is investigated as a representative case. In this study, we do not only perform electrochemical characterization on CuSbS2, but also investigate its nonequilibrium sodiation pathway employing in-/ex situ transmission electron microscopy, in situ X-ray diffraction, and density functional theory calculations. Our finding provides valuable insights on sodium storage into ternary metal sulfide including an alloying element. ? 2021 American Chemical Society.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titleNon-Equilibrium Sodiation Pathway of CuSbS2-
dc.typeArticle-
dc.identifier.doi10.1021/acsnano.1c03839-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS Nano, v.15, no.11, pp.17472 - 17479-
dc.citation.titleACS Nano-
dc.citation.volume15-
dc.citation.number11-
dc.citation.startPage17472-
dc.citation.endPage17479-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000747115200033-
dc.identifier.scopusid2-s2.0-85119412848-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusION-
dc.subject.keywordPlusPERFORMANCE-
dc.subject.keywordPlusSULFIDE-
dc.subject.keywordAuthorCuSbS2-
dc.subject.keywordAuthordensity functional theory-
dc.subject.keywordAuthorin-/ ex-situ transmission electron microscopy-
dc.subject.keywordAuthorNa ion battery-
dc.subject.keywordAuthornonequilibrium sodiation pathway-
dc.subject.keywordAuthorternary metal sulfide-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE