Full metadata record

DC Field Value Language
dc.contributor.authorLee, D.-
dc.contributor.authorGo, D.-
dc.contributor.authorPark, H.-J.-
dc.contributor.authorJeong, W.-
dc.contributor.authorKo, H.-W.-
dc.contributor.authorYun, D.-
dc.contributor.authorJo, D.-
dc.contributor.authorLee, S.-
dc.contributor.authorGo, G.-
dc.contributor.authorOh, J.H.-
dc.contributor.authorKim, K.-J.-
dc.contributor.authorPark, B.-G.-
dc.contributor.authorMin, B.-C.-
dc.contributor.authorKoo, H.C.-
dc.contributor.authorLee, H.-W.-
dc.contributor.authorLee, O.J.-
dc.contributor.authorLee, K.-J.-
dc.date.accessioned2024-01-19T13:30:30Z-
dc.date.available2024-01-19T13:30:30Z-
dc.date.created2022-01-10-
dc.date.issued2021-11-18-
dc.identifier.issn2041-1723-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/116119-
dc.description.abstractThe orbital Hall effect describes the generation of the orbital current flowing in a perpendicular direction to an external electric field, analogous to the spin Hall effect. As the orbital current carries the angular momentum as the spin current does, injection of the orbital current into a ferromagnet can result in torque on the magnetization, which provides a way to detect the orbital Hall effect. With this motivation, we examine the current-induced spin-orbit torques in various ferromagnet/heavy metal bilayers by theory and experiment. Analysis of the magnetic torque reveals the presence of the contribution from the orbital Hall effect in the heavy metal, which competes with the contribution from the spin Hall effect. In particular, we find that the net torque in Ni/Ta bilayers is opposite in sign to the spin Hall theory prediction but instead consistent with the orbital Hall theory, which unambiguously confirms the orbital torque generated by the orbital Hall effect. Our finding opens a possibility of utilizing the orbital current for spintronic device applications, and it will invigorate researches on spin-orbit-coupled phenomena based on orbital engineering. ? 2021, The Author(s).-
dc.languageEnglish-
dc.publisherNature Research-
dc.titleOrbital torque in magnetic bilayers-
dc.typeArticle-
dc.identifier.doi10.1038/s41467-021-26650-9-
dc.description.journalClass1-
dc.identifier.bibliographicCitationNature Communications, v.12, no.1-
dc.citation.titleNature Communications-
dc.citation.volume12-
dc.citation.number1-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000720682300013-
dc.identifier.scopusid2-s2.0-85119445824-
dc.relation.journalWebOfScienceCategoryMultidisciplinary Sciences-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.type.docTypeArticle-
dc.subject.keywordPlusROOM-TEMPERATURE-
dc.subject.keywordPlusSPIN-TORQUE-
dc.subject.keywordPlusMAGNETORESISTANCE-
dc.subject.keywordAuthororbital torque-
dc.subject.keywordAuthororbital Hall effect-
dc.subject.keywordAuthorspin Hall effect-
dc.subject.keywordAuthorspin orbit torque-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE