Full metadata record

DC Field Value Language
dc.contributor.authorKim, Dong Young-
dc.contributor.authorKim, Ji Hoon-
dc.contributor.authorLi, Mochen-
dc.contributor.authorNoda, Suguru-
dc.contributor.authorKim, Jungpil-
dc.contributor.authorKim, Kwang-Seok-
dc.contributor.authorKim, Keun Soo-
dc.contributor.authorYang, Cheol-Min-
dc.date.accessioned2024-01-19T13:30:45Z-
dc.date.available2024-01-19T13:30:45Z-
dc.date.created2021-10-21-
dc.date.issued2021-11-15-
dc.identifier.issn0169-4332-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/116134-
dc.description.abstractWe report the controllable pore structures of pure (>99.5 wt%) and sub-millimeter-long single-walled and few-walled (triple-walled on average) carbon nanotubes (SWCNTs and FWCNTs, respectively) synthesized via fluidized-bed chemical vapor deposition. The pore structures and adsorption properties of the CNTs were characterized using N-2 adsorption analysis at 77 K. A significant advantage of the synthesized vertically-aligned SWCNTs (diameter range: 2-4 nm) and FWCNTs (diameter range: 4-8 nm) arrays, having small bundle structures, is that the guest molecules can easily access the external surfaces of the CNTs, leading to high specific surface areas (SSAs; 903 and 337 m(2) g(-1), respectively) and pore volumes (2.56 and 2.05 mL g(-1), respectively). Interestingly, following sonication, the SSAs of the SWCNTs and FWCNTs increased by 36% and 41%, respectively. Additionally, after mixed acid (HNO3/H2SO4) treatment, the SSAs of the SWCNTs and FWCNTs increased by 34% and 120%, respectively, which are attributed to the corresponding increases in the micropore and mesopore SSAs. These results suggest that CNT networks with controllable pore structures can be fabricated by altering the diameter distribution and alignment degree of the CNTs, thus highlighting the potential of our approach to develop cost-effective CNT-based structures for applications such as high-performance energy storage materials.-
dc.languageEnglish-
dc.publisherELSEVIER-
dc.subjectFLUIDIZED-BED-
dc.subjectSURFACE-AREA-
dc.subjectPOSITIVE ELECTRODES-
dc.subjectHYDROGEN STORAGE-
dc.subjectACTIVATED CARBON-
dc.subjectHIGH-PERFORMANCE-
dc.subjectSINGLE-
dc.subjectMETHANE-
dc.subjectCATALYST-
dc.subjectGROWTH-
dc.titleControllable pore structures of pure and sub-millimeter-long carbon nanotubes-
dc.typeArticle-
dc.identifier.doi10.1016/j.apsusc.2021.150751-
dc.description.journalClass1-
dc.identifier.bibliographicCitationAPPLIED SURFACE SCIENCE, v.566-
dc.citation.titleAPPLIED SURFACE SCIENCE-
dc.citation.volume566-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000691188100002-
dc.identifier.scopusid2-s2.0-85111330013-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryMaterials Science, Coatings & Films-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusFLUIDIZED-BED-
dc.subject.keywordPlusSURFACE-AREA-
dc.subject.keywordPlusPOSITIVE ELECTRODES-
dc.subject.keywordPlusHYDROGEN STORAGE-
dc.subject.keywordPlusACTIVATED CARBON-
dc.subject.keywordPlusHIGH-PERFORMANCE-
dc.subject.keywordPlusSINGLE-
dc.subject.keywordPlusMETHANE-
dc.subject.keywordPlusCATALYST-
dc.subject.keywordPlusGROWTH-
dc.subject.keywordAuthorSingle-walled carbon nanotubes-
dc.subject.keywordAuthorFew-walled carbon nanotubes-
dc.subject.keywordAuthorAdsorption-
dc.subject.keywordAuthorPore structure-
dc.subject.keywordAuthorMicroporosity-
dc.subject.keywordAuthorMesoporosity-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE