Full metadata record

DC Field Value Language
dc.contributor.authorKim, Youngjin-
dc.contributor.authorJang, Jue-Hyuk-
dc.contributor.authorMin, Jiho-
dc.contributor.authorJeffery, A. Anto-
dc.contributor.authorLee, Seunghyun-
dc.contributor.authorChougule, S. S.-
dc.contributor.authorKim, MinJoong-
dc.contributor.authorJung, Namgee-
dc.contributor.authorYoo, Sung Jong-
dc.date.accessioned2024-01-19T13:30:51Z-
dc.date.available2024-01-19T13:30:51Z-
dc.date.created2022-01-10-
dc.date.issued2021-11-09-
dc.identifier.issn2050-7488-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/116140-
dc.description.abstractThe development of Pt-based alloy nanoparticles has contributed to improving fuel cell performance. Nevertheless, the commercialization of the catalysts is limited due to structural stability issues. To enhance the durability of Pt-based alloy catalysts, carbon-encapsulated nanoparticles have been widely studied. However, fine-tuning the carbon shell structure at the atomic scale remains a challenge when adopting a typical top-down approach, which involves a high-temperature graphitization process after polymer coating. Here, we propose a bottom-up approach to carbon encapsulation of Pt3Fe1 nanoparticles. Using extremely small amounts of carbon sources produced by the decomposition of organic ligands in metal precursors, carbon-encapsulated Pt3Fe1 nanoparticles with ultrathin carbon shells are fabricated without additional polymer coating process. Furthermore, the pore structure of the carbon shells is rationally modulated at the sub-nm level without changing the particle size via carbon etching using H-2 gas. In-depth studies prove that the fine-tuned carbon shell structure has a significant effect on the activity and durability of Pt3Fe1 nanoparticles. Using the testing protocol suggested by the US Department of Energy, a target-customized carbon shell structure has been discovered that satisfies the 2025 targets of "<30 mV loss at 0.8 A cm(-2)" and "<40% loss of electrochemical active surface area".-
dc.languageEnglish-
dc.publisherROYAL SOC CHEMISTRY-
dc.subjectMEMBRANE-ELECTRODE ASSEMBLIES-
dc.subjectSTABLE ELECTROCATALYSTS-
dc.subjectHYDROGEN OXIDATION-
dc.subjectOXYGEN-
dc.subjectDURABILITY-
dc.subjectPLATINUM-
dc.subjectCATALYST-
dc.subjectDESIGN-
dc.subjectGRAPHENE-
dc.subjectAU-
dc.titleA target-customized carbon shell structure of carbon-encapsulated metal nanoparticles for fuel cell applications-
dc.typeArticle-
dc.identifier.doi10.1039/d1ta06289a-
dc.description.journalClass1-
dc.identifier.bibliographicCitationJOURNAL OF MATERIALS CHEMISTRY A, v.9, no.43, pp.24480 - 24487-
dc.citation.titleJOURNAL OF MATERIALS CHEMISTRY A-
dc.citation.volume9-
dc.citation.number43-
dc.citation.startPage24480-
dc.citation.endPage24487-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000711953500001-
dc.identifier.scopusid2-s2.0-85118923601-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEnergy & Fuels-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEnergy & Fuels-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusMEMBRANE-ELECTRODE ASSEMBLIES-
dc.subject.keywordPlusSTABLE ELECTROCATALYSTS-
dc.subject.keywordPlusHYDROGEN OXIDATION-
dc.subject.keywordPlusOXYGEN-
dc.subject.keywordPlusDURABILITY-
dc.subject.keywordPlusPLATINUM-
dc.subject.keywordPlusCATALYST-
dc.subject.keywordPlusDESIGN-
dc.subject.keywordPlusGRAPHENE-
dc.subject.keywordPlusAU-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE