Full metadata record

DC Field Value Language
dc.contributor.authorKim, Byeongyoon-
dc.contributor.authorKabiraz, Mrinal Kanti-
dc.contributor.authorLee, Jaewan-
dc.contributor.authorChoi, Changhyeok-
dc.contributor.authorBaik, Hionsuck-
dc.contributor.authorJung, Yousung-
dc.contributor.authorOh, Hyung-Suk-
dc.contributor.authorChoi, Sang-Il-
dc.contributor.authorLee, Kwangyeol-
dc.date.accessioned2024-01-19T13:31:51Z-
dc.date.available2024-01-19T13:31:51Z-
dc.date.created2022-01-10-
dc.date.issued2021-11-
dc.identifier.issn2590-2393-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/116203-
dc.description.abstractThe layered transition metal oxyhydroxides have received increasing interest owing to the efficient energy conversion performance and material stability during the oxygen evolution reaction (OER). In particular, Fe-doped NiOOH has shown record-high OER performance in alkaline media among various catalysts. Theoretically, undercoordinated facets including Ni4+, exposed at the edges of NiOOH, were predicted to perform highly active OER. Therefore, here we suggest a rational catalyst design, a vertical-crystalline beta-Fe/NiOOH layer built on faceted Fe/Ni nanocrystals, which exposes Ni4+ sites and could improve the OER performance dramatically. Electrochemical OER tests recorded the overpotential of 210 mV at a current density of 10 mA cm(-2) GEO and stable operation for 5 days. In situ/operando and density functional theory studies revealed that the Ni valence cycle between +2 and +4 assisted by Fe dopant is the key engine that greatly accelerates OER kinetics and that the vertical-crystalline beta-Fe/NiOOH layers on Ni octahedra are stable under harsh OER conditions.-
dc.languageEnglish-
dc.publisherCell Press-
dc.titleVertical-crystalline Fe-doped beta-Ni oxyhydroxides for highly active and stable evolution reaction-
dc.typeArticle-
dc.identifier.doi10.1016/j.matt.2021.09.003-
dc.description.journalClass1-
dc.identifier.bibliographicCitationMatter, v.4, no.11, pp.3585 - 3604-
dc.citation.titleMatter-
dc.citation.volume4-
dc.citation.number11-
dc.citation.startPage3585-
dc.citation.endPage3604-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000717520800003-
dc.identifier.scopusid2-s2.0-85123000978-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalResearchAreaMaterials Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusMEMBRANE WATER ELECTROLYSIS-
dc.subject.keywordPlusOXYGEN-EVOLUTION-
dc.subject.keywordPlusELECTRONIC-STRUCTURE-
dc.subject.keywordPlusREACTION DYNAMICS-
dc.subject.keywordPlusREDOX STATES-
dc.subject.keywordPlusCATALYSTS-
dc.subject.keywordPlusELECTROCATALYSTS-
dc.subject.keywordPlusOXIDE-
dc.subject.keywordPlusOXIDATION-
dc.subject.keywordPlusXANES-
dc.subject.keywordAuthorHeteroepitaxy-
dc.subject.keywordAuthorOxygen evolution reaction-
dc.subject.keywordAuthorCrystalline Fe/NiOOH-
dc.subject.keywordAuthorAEMWE-
dc.subject.keywordAuthorFacet control-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE