Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Choi, Daehee | - |
dc.contributor.author | Cho, Kyungjin | - |
dc.contributor.author | Hwang, Kwanghyun | - |
dc.contributor.author | Yun, Wonsang | - |
dc.contributor.author | Jung, Jinyoung | - |
dc.date.accessioned | 2024-01-19T13:32:06Z | - |
dc.date.available | 2024-01-19T13:32:06Z | - |
dc.date.created | 2022-01-10 | - |
dc.date.issued | 2021-11 | - |
dc.identifier.issn | 0048-9697 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/116218 | - |
dc.description.abstract | This paper describes the new concept of the mainstream partial nitritation (PN)-anaerobic ammonium oxidation (ANAMMOX) combined with a high-temperature shock strategy for the selective recovery of ammonia-oxidizing bacteria (AOB) activity. In the preliminary test, the temperature shock condition for PN was optimized (60 degrees C and > 20 min). Based on this, the implementation strategy in a continuous stirred tank reactor (CSTR) system was studied further, and the polyvinyl alcohol (PVA)/sodium alginate carrier exposure ratio (ER) and dissolved oxygen (DO) concentration were considered as primary variables. The AOB activity was recovered selectively when the ER of the carrier ranged from 20 to 40%, and the DO was higher than 2.3 mg O-2/L. This was not the case for nitrite-oxidizing bacteria (NOB) (AOB: 1.17 +/- 0.1 gNH(4)(+)-N/L-Carrier/d, NOB: 0.34 +/- 0.1 gNO(3)(-)-N/L-Carrier/d). As a result, the activity of AOB was recovered selectively with a decrease in Nitrospira spp., which was verified by kinetic and microbial analyses for the AOB (K-S,K- DO = 3.89 mgO(2)/L) and NOB (K-S,K- DO = 1.14 mgO(2)/L). Eventually, the mainstream PN-ANAMMOX was achieved with a nitrogen removal efficiency of 81.5 +/- 3.3% for 95 days. The findings provide insight to establishing a stable mainstream PN-ANAMMOX process using a high-temperature shock strategy. (C) 2021 Elsevier B.V. All rights reserved. | - |
dc.language | English | - |
dc.publisher | ELSEVIER | - |
dc.title | Achieving stable nitrogen removal performance of mainstream PN-ANAMMOX by combining high-temperature shock for selective recovery of AOB activity | - |
dc.type | Article | - |
dc.identifier.doi | 10.1016/j.scitotenv.2021.148582 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | SCIENCE OF THE TOTAL ENVIRONMENT, v.794 | - |
dc.citation.title | SCIENCE OF THE TOTAL ENVIRONMENT | - |
dc.citation.volume | 794 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000691672900012 | - |
dc.identifier.scopusid | 2-s2.0-85109172199 | - |
dc.relation.journalWebOfScienceCategory | Environmental Sciences | - |
dc.relation.journalResearchArea | Environmental Sciences & Ecology | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | SEQUENCING BATCH REACTOR | - |
dc.subject.keywordPlus | WASTE-WATER | - |
dc.subject.keywordPlus | PARTIAL NITRIFICATION | - |
dc.subject.keywordPlus | OXYGEN CONCENTRATION | - |
dc.subject.keywordPlus | NITRITATION-ANAMMOX | - |
dc.subject.keywordPlus | OXIDATION-KINETICS | - |
dc.subject.keywordPlus | AMMONIUM OXIDATION | - |
dc.subject.keywordPlus | COMMUNITY | - |
dc.subject.keywordPlus | NICHE | - |
dc.subject.keywordPlus | PARAMETERS | - |
dc.subject.keywordAuthor | Mainstream PN-ANAMMOX | - |
dc.subject.keywordAuthor | High-temperature shock | - |
dc.subject.keywordAuthor | Selective activity recovery | - |
dc.subject.keywordAuthor | Microbial community structures | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.