Full metadata record

DC Field Value Language
dc.contributor.authorDun, Chaochao-
dc.contributor.authorJeong, Sohee-
dc.contributor.authorLiu, Yi-Sheng-
dc.contributor.authorLeick, Noemi-
dc.contributor.authorMattox, Tracy M.-
dc.contributor.authorGuo, Jinghua-
dc.contributor.authorLee, Joo-Won-
dc.contributor.authorGennett, Thomas-
dc.contributor.authorStavila, Vitalie-
dc.contributor.authorUrban, Jeffrey J.-
dc.date.accessioned2024-01-19T13:32:09Z-
dc.date.available2024-01-19T13:32:09Z-
dc.date.created2022-01-10-
dc.date.issued2021-11-
dc.identifier.issn1613-6810-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/116222-
dc.description.abstractDesign of interfaces with thermodynamic and kinetic specificity is of great importance for hydrogen storage from both an applied and fundamental perspective. Here, in order to destabilize the metal hydride and protect the dehydrogenated products from oxidizing, a unique core-shell structure of porous Mg(BH4)(2)-based framework with a thin layer (no more than 5 nm) of MgCl2 additives on the surface, has been proposed and synthesized via a wet-chemical method. The local structure and electronic state of the present complex system are systematically investigated to understand the correlation between the distribution of additives and dehydrogenation property of Mg(BH4)(2). A significant improvement is achieved for hydrogen desorption with chlorides: initial hydrogen release from MgCl2 decorated gamma-phase Mg(BH4)(2) particles commences at 100 degrees C and reaches a maximum of 9.4 wt% at 385 degrees C. Besides the decreased decomposition temperature, an activation barrier of about 76.4 kJ mol(-1) lower than that of Mg(BH4)(2) without MgCl2 is obtained. Moreover, MgCl2 decoration can also prevent the whole decomposed system (both Mg- and B- elements) from oxidizing, which is a necessary condition to reversibility.-
dc.languageEnglish-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.subjectHYDROGEN STORAGE PROPERTIES-
dc.subjectMG(BH4)(2)-
dc.subjectRELEASE-
dc.titleAdditive Destabilization of Porous Magnesium Borohydride Framework with Core-Shell Structure-
dc.typeArticle-
dc.identifier.doi10.1002/smll.202101989-
dc.description.journalClass1-
dc.identifier.bibliographicCitationSMALL, v.17, no.44-
dc.citation.titleSMALL-
dc.citation.volume17-
dc.citation.number44-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000699947300001-
dc.identifier.scopusid2-s2.0-85115713698-
dc.relation.journalWebOfScienceCategoryChemistry, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusHYDROGEN STORAGE PROPERTIES-
dc.subject.keywordPlusMG(BH4)(2)-
dc.subject.keywordPlusRELEASE-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE