Full metadata record

DC Field Value Language
dc.contributor.authorKim, Young Nam-
dc.contributor.authorJo, Jun Young-
dc.contributor.authorKim, Yebom-
dc.contributor.authorHa, Yu-Mi-
dc.contributor.authorHan, Haksoo-
dc.contributor.authorLee, Doh C.-
dc.contributor.authorKim, Jaewoo-
dc.contributor.authorJung, Yong Chae-
dc.date.accessioned2024-01-19T13:32:10Z-
dc.date.available2024-01-19T13:32:10Z-
dc.date.created2022-01-10-
dc.date.issued2021-11-
dc.identifier.issn1438-7492-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/116223-
dc.description.abstractA polyurethane (PU) composite nanofiber with superior flame retardancy and antimicrobial property is developed through the simultaneous incorporation of boron-doped carbon nanotubes (CNTs) and tannic acid (TA), resulting in excellent thermal, mechanical, and eco-friendly flame-retardant properties. The tensile strength and peak heat-release rate of the composite nanofiber increase with increasing filler content, with the optimal performance (7.38 +/- 1.04 MPa and 254 W g(-1)) being achieved at 3 wt% filler. Using a series of analytical techniques, it is demonstrated that the nanostructure of the neat PU completely collapses upon heating, transforming into a film-like structure; in contrast, a higher loading of nanofiller leads to a higher heat-shielding capability, thereby facilitating preservation of the composite nanofiber structure. Finally, the antibacterial activity is shown to increase as a result of the synergic effect of the boron-doped CNTs and TA.-
dc.languageEnglish-
dc.publisherWILEY-V C H VERLAG GMBH-
dc.subjectMECHANICAL-PROPERTIES-
dc.subjectEPOXY-RESIN-
dc.subjectRAMAN CHARACTERIZATION-
dc.subjectCURING KINETICS-
dc.subjectANTIOXIDANT-
dc.subjectPOLYPHENOLS-
dc.subjectHYDROGELS-
dc.subjectGRAPHENE-
dc.subjectCYTOTOXICITY-
dc.subjectENHANCEMENT-
dc.titleStructure Stability, Flame Retardancy, and Antimicrobial Properties of Polyurethane Composite Nanofibers Containing Tannic Acid and Boron-Doped Carbon Nanotubes-
dc.typeArticle-
dc.identifier.doi10.1002/mame.202100455-
dc.description.journalClass1-
dc.identifier.bibliographicCitationMACROMOLECULAR MATERIALS AND ENGINEERING, v.306, no.11-
dc.citation.titleMACROMOLECULAR MATERIALS AND ENGINEERING-
dc.citation.volume306-
dc.citation.number11-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000697448000001-
dc.identifier.scopusid2-s2.0-85115087005-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPolymer Science-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPolymer Science-
dc.type.docTypeArticle-
dc.subject.keywordPlusMECHANICAL-PROPERTIES-
dc.subject.keywordPlusEPOXY-RESIN-
dc.subject.keywordPlusRAMAN CHARACTERIZATION-
dc.subject.keywordPlusCURING KINETICS-
dc.subject.keywordPlusANTIOXIDANT-
dc.subject.keywordPlusPOLYPHENOLS-
dc.subject.keywordPlusHYDROGELS-
dc.subject.keywordPlusGRAPHENE-
dc.subject.keywordPlusCYTOTOXICITY-
dc.subject.keywordPlusENHANCEMENT-
dc.subject.keywordAuthorantimicrobial properties-
dc.subject.keywordAuthorboron-doped CNTs-
dc.subject.keywordAuthorflame retardants-
dc.subject.keywordAuthornanocomposite fibers-
dc.subject.keywordAuthortannin acid-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE