Full metadata record

DC Field Value Language
dc.contributor.authorLee, Woong Hee-
dc.contributor.authorLim, Chulwan-
dc.contributor.authorBan, Eunseo-
dc.contributor.authorBae, Soohyun-
dc.contributor.authorKo, Jongwon-
dc.contributor.authorLee, Hae-Seok-
dc.contributor.authorMin, Byoung Koun-
dc.contributor.authorLee, Kwan-Young-
dc.contributor.authorYu, Jae Su-
dc.contributor.authorOh, Hyung-Suk-
dc.date.accessioned2024-01-19T13:32:21Z-
dc.date.available2024-01-19T13:32:21Z-
dc.date.created2021-10-21-
dc.date.issued2021-11-
dc.identifier.issn0926-3373-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/116235-
dc.description.abstractThe electrochemical conversion of CO2 into CO using solar energy is the most efficient technique for artificial photosynthesis. However, many challenges remain, including the realisation of large-scale systems with high current density and stability. Herein, we report a carbon-supported tungsten-seed-based 3D silver dendrite (W@AgD) catalyst with abundant nanograin boundaries that exhibit enhanced CO2 reduction (CO2R) performance and stability. In zero-gap CO2 electrolyzer, W@AgD showed outstanding catalytic activity with a maximum CO partial current density of 400 mA cm(-2) and stable operation for 100 h at 150 mA cm(-2). The 3D dendrites improve CO2 mass transfer, while the abundant grain boundaries drive the AgxCyOz layer near the surface after activation, leading to superior CO2R catalytic activity owing to the strong local electric fields. In a stand-alone photovoltaic-electrochemical system, we achieved a solar-to-CO efficiency (eta(STC)) of 12.1 % at 1 A. Thus, the synthesized catalyst and system are suitable for efficient solar energy storage.-
dc.languageEnglish-
dc.publisherElsevier BV-
dc.titleW@Ag dendrites as efficient and durable electrocatalyst for solar-to-CO conversion using scalable photovoltaic-electrochemical system-
dc.typeArticle-
dc.identifier.doi10.1016/j.apcatb.2021.120427-
dc.description.journalClass1-
dc.identifier.bibliographicCitationApplied Catalysis B: Environmental, v.297-
dc.citation.titleApplied Catalysis B: Environmental-
dc.citation.volume297-
dc.description.isOpenAccessY-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000700080800002-
dc.identifier.scopusid2-s2.0-85107824642-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryEngineering, Environmental-
dc.relation.journalWebOfScienceCategoryEngineering, Chemical-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusCARBON-DIOXIDE REDUCTION-
dc.subject.keywordPlusPLASMONIC PHOTOCATALYST-
dc.subject.keywordPlusFLOW CELL-
dc.subject.keywordPlusELECTROREDUCTION-
dc.subject.keywordPlusNANOCOMPOSITES-
dc.subject.keywordPlusSURFACE-
dc.subject.keywordPlusNANOPARTICLES-
dc.subject.keywordPlusELECTRODES-
dc.subject.keywordPlusMONOXIDE-
dc.subject.keywordAuthorSolar to chemical conversion-
dc.subject.keywordAuthorPhotovoltaic-electrochemical system-
dc.subject.keywordAuthorElectrochemical CO2 reduction reaction (CO2RR)-
dc.subject.keywordAuthorCarbon monoxide-
dc.subject.keywordAuthorAg dendrites-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE