Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ryu, H. | - |
dc.contributor.author | Rho, H. | - |
dc.contributor.author | Lee, S.W. | - |
dc.contributor.author | Lee, S.-K. | - |
dc.contributor.author | Lee, H. | - |
dc.contributor.author | Bae, S. | - |
dc.contributor.author | Kim, T.-W. | - |
dc.contributor.author | Cho, M.W. | - |
dc.contributor.author | Ha, J.-S. | - |
dc.contributor.author | Lee, S.H. | - |
dc.date.accessioned | 2024-01-19T13:32:44Z | - |
dc.date.available | 2024-01-19T13:32:44Z | - |
dc.date.created | 2021-10-21 | - |
dc.date.issued | 2021-10-15 | - |
dc.identifier.issn | 0008-6223 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/116260 | - |
dc.description.abstract | Despite the remarkable thermal properties of graphene, the heat transport along the z-axis is intrinsically limited by the van der Waals interactions, leading to thermal anisotropy in multilayered graphene (or graphite) and its composites. Herein, we report a graphene foam (GF) with three-dimensional (3D) pore structure-based metal composites with excellent isotropic thermal conductivity and fast heat transfer performance. The 3D periodic structure of the GF?copper composites composed of high-quality multilayer graphene and copper was formed via a chemical vapor deposition (CVD) and a spark plasma sintering (SPS) process. The high-quality graphene layers in GF were well-bonded to copper, forming a clear interface without voids in the consolidated composites. Owing to the uniform 3D interconnection of graphene layer in the GF, in spite of less than 1 vol% carbon in the copper matrix, the GF?copper composites showed high isotropic thermal conductivity, which was higher by about 11 and 6% for in-plane and through-plane, respectively, than those of the bulk copper (∼400 W m?1 K?1). The superior performance of the 3D graphene-based metal?carbon composites offers remarkable opportunities in thermal management for advanced electronic and optoelectronic devices requiring high power density and efficiency. ? 2021 | - |
dc.language | English | - |
dc.publisher | Elsevier Ltd | - |
dc.subject | Carbon carbon composites | - |
dc.subject | Chemical vapor deposition | - |
dc.subject | Copper | - |
dc.subject | Foams | - |
dc.subject | Heat transfer | - |
dc.subject | Metallic matrix composites | - |
dc.subject | Spark plasma sintering | - |
dc.subject | Thermal conductivity | - |
dc.subject | Van der Waals forces | - |
dc.subject | 3-dimensional | - |
dc.subject | 3D graphene | - |
dc.subject | Copper-composites | - |
dc.subject | Graphene foams | - |
dc.subject | Graphene layers | - |
dc.subject | Heat transport | - |
dc.subject | High quality | - |
dc.subject | Isotropics | - |
dc.subject | Metal-carbon composite | - |
dc.subject | Thermal | - |
dc.subject | Graphene | - |
dc.title | Swift isotropic heat transport of 3D graphene platform-based metal-graphene composites | - |
dc.type | Article | - |
dc.identifier.doi | 10.1016/j.carbon.2021.07.008 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | Carbon, v.183, pp.93 - 99 | - |
dc.citation.title | Carbon | - |
dc.citation.volume | 183 | - |
dc.citation.startPage | 93 | - |
dc.citation.endPage | 99 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000705083800009 | - |
dc.identifier.scopusid | 2-s2.0-85109522362 | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | Carbon carbon composites | - |
dc.subject.keywordPlus | Chemical vapor deposition | - |
dc.subject.keywordPlus | Copper | - |
dc.subject.keywordPlus | Foams | - |
dc.subject.keywordPlus | Heat transfer | - |
dc.subject.keywordPlus | Metallic matrix composites | - |
dc.subject.keywordPlus | Spark plasma sintering | - |
dc.subject.keywordPlus | Thermal conductivity | - |
dc.subject.keywordPlus | Van der Waals forces | - |
dc.subject.keywordPlus | 3-dimensional | - |
dc.subject.keywordPlus | 3D graphene | - |
dc.subject.keywordPlus | Copper-composites | - |
dc.subject.keywordPlus | Graphene foams | - |
dc.subject.keywordPlus | Graphene layers | - |
dc.subject.keywordPlus | Heat transport | - |
dc.subject.keywordPlus | High quality | - |
dc.subject.keywordPlus | Isotropics | - |
dc.subject.keywordPlus | Metal-carbon composite | - |
dc.subject.keywordPlus | Thermal | - |
dc.subject.keywordPlus | Graphene | - |
dc.subject.keywordAuthor | 3-Dimensional | - |
dc.subject.keywordAuthor | Graphene | - |
dc.subject.keywordAuthor | Heat transfer | - |
dc.subject.keywordAuthor | Isotropic | - |
dc.subject.keywordAuthor | Metal-carbon composites | - |
dc.subject.keywordAuthor | Thermal conductivity | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.