Full metadata record

DC Field Value Language
dc.contributor.authorKu, E.J.-
dc.contributor.authorLee, C.-
dc.contributor.authorShim, J.-
dc.contributor.authorLee, S.-
dc.contributor.authorKim, K.-A.-
dc.contributor.authorKim, S.W.-
dc.contributor.authorRhee, Y.-
dc.contributor.authorKim, H.-J.-
dc.contributor.authorLim, J.S.-
dc.contributor.authorChung, C.H.-
dc.contributor.authorChun, S.W.-
dc.contributor.authorYoo, S.-J.-
dc.contributor.authorRyu, O.-H.-
dc.contributor.authorCho, H.C.-
dc.contributor.authorRam, Hong A.-
dc.contributor.authorAhn, C.H.-
dc.contributor.authorKim, J.H.-
dc.contributor.authorChoi, M.H.-
dc.date.accessioned2024-01-19T13:33:26Z-
dc.date.available2024-01-19T13:33:26Z-
dc.date.created2022-01-10-
dc.date.issued2021-10-
dc.identifier.issn2093-596X-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/116302-
dc.description.abstractBackground: Conventional diagnostic approaches for adrenal tumors require multi-step processes, including imaging studies and dynamic hormone tests. Therefore, this study aimed to discriminate adrenal tumors from a single blood sample based on the combination of liquid chromatography-mass spectrometry (LC-MS) and machine learning algorithms in serum profiling of adrenal steroids. Methods: The LC-MS-based steroid profiling was applied to serum samples obtained from patients with nonfunctioning adenoma (NFA, n=73), Cushing's syndrome (CS, n=30), and primary aldosteronism (PA, n=40) in a prospective multicenter study of adrenal disease. The decision tree (DT), random forest (RF), and extreme gradient boost (XGBoost) were performed to categorize the subtypes of adrenal tumors. Results: The CS group showed higher serum levels of 11-deoxycortisol than the NFA group, and increased levels of tetrahydrocortisone (THE), 20α-dihydrocortisol, and 6β-hydroxycortisol were found in the PA group. However, the CS group showed lower levels of dehydroepiandrosterone (DHEA) and its sulfate derivative (DHEA-S) than both the NFA and PA groups. Patients with PA expressed higher serum 18-hydroxycortisol and DHEA but lower THE than NFA patients. The balanced accuracies of DT, RF, and XGBoost for classifying each type were 78%, 96%, and 97%, respectively. In receiver operating characteristics (ROC) analysis for CS, XGBoost, and RF showed a significantly greater diagnostic power than the DT. However, in ROC analysis for PA, only RF exhibited better diagnostic performance than DT. Conclusion: The combination of LC-MS-based steroid profiling with machine learning algorithms could be a promising one-step diagnostic approach for the classification of adrenal tumor subtypes. ? 2021 Korean Endocrine Society. All rights reserved.-
dc.languageEnglish-
dc.publisher대한내분비학회-
dc.titleMetabolic subtyping of adrenal tumors: Prospective multi-center cohort study in korea-
dc.typeArticle-
dc.identifier.doi10.3803/EnM.2021.1149-
dc.description.journalClass1-
dc.identifier.bibliographicCitationEndocrinology and Metabolism, v.36, no.5, pp.1131 - 1141-
dc.citation.titleEndocrinology and Metabolism-
dc.citation.volume36-
dc.citation.number5-
dc.citation.startPage1131-
dc.citation.endPage1141-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.description.journalRegisteredClasskci-
dc.identifier.kciidART002771035-
dc.identifier.wosid000727577100021-
dc.identifier.scopusid2-s2.0-85119262523-
dc.relation.journalWebOfScienceCategoryEndocrinology & Metabolism-
dc.relation.journalResearchAreaEndocrinology & Metabolism-
dc.type.docTypeArticle-
dc.subject.keywordPlusPRIMARY ALDOSTERONISM-
dc.subject.keywordPlusCUSHINGS-SYNDROME-
dc.subject.keywordPlusDIAGNOSIS-
dc.subject.keywordPlus18-HYDROXYCORTISOL-
dc.subject.keywordPlus18-OXOCORTISOL-
dc.subject.keywordPlusSOCIETY-
dc.subject.keywordPlusMANAGEMENT-
dc.subject.keywordPlusSECRETION-
dc.subject.keywordPlusMS/MS-
dc.subject.keywordAuthorAdrenal neoplasms-
dc.subject.keywordAuthorCushing syndrome-
dc.subject.keywordAuthorPrimary hyperaldosteronism-
dc.subject.keywordAuthorSteroid metabolism-
dc.subject.keywordAuthorSupervised machine learning-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE