Full metadata record

DC Field Value Language
dc.contributor.authorDas, Anustup-
dc.contributor.authorLee Dongjun-
dc.contributor.authorShandilya, Prasoon K.-
dc.contributor.authorKim, Sejeong-
dc.contributor.authorKang, Gumin-
dc.contributor.authorLake, David P.-
dc.contributor.authorBehera, Bishnupada-
dc.contributor.authorSukachev, Denis-
dc.contributor.authorAharonovich, Igor-
dc.contributor.authorLee, Jung-Hyun-
dc.contributor.authorPark, Jaehyun-
dc.contributor.authorBarclay, Paul E.-
dc.date.accessioned2024-01-19T13:33:44Z-
dc.date.available2024-01-19T13:33:44Z-
dc.date.created2022-01-10-
dc.date.issued2021-10-
dc.identifier.issn2330-4022-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/116322-
dc.description.abstractHexagonal boron nitride (hBN) is a wide bandgap van der Waals material that is emerging as a powerful platform for quantum optics and nanophotonics. In this work, we demonstrate whispering gallery mode silica microresonators hybridized with thin layers of hBN that exhibit high intrinsic optical quality factor >7 x 10(5) and a linear absorption coefficient of 9.5 cm(-1). Measurements of the effect of hBN thickness on optical Q and comparison with a theoretical model allows the linear optical absorption coefficient of the hBN films to be estimated. These high-Q devices will be useful for applications in quantum and nonlinear optics, and their hybridized geometry provides a sensitive platform for evaluating losses in hBN and other 2D materials.-
dc.languageEnglish-
dc.publisherAMER CHEMICAL SOC-
dc.titleDemonstration of Hybrid High-Q Hexagonal Boron Nitride Microresonators-
dc.typeArticle-
dc.identifier.doi10.1021/acsphotonics.1c00973-
dc.description.journalClass1-
dc.identifier.bibliographicCitationACS PHOTONICS, v.8, no.10, pp.3027 - 3033-
dc.citation.titleACS PHOTONICS-
dc.citation.volume8-
dc.citation.number10-
dc.citation.startPage3027-
dc.citation.endPage3033-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000710954200027-
dc.identifier.scopusid2-s2.0-85117338748-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryOptics-
dc.relation.journalWebOfScienceCategoryPhysics, Applied-
dc.relation.journalWebOfScienceCategoryPhysics, Condensed Matter-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaOptics-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordPlusMICRODISK RESONATORS-
dc.subject.keywordAuthornanophotonics-
dc.subject.keywordAuthorwhispering gallery mode-
dc.subject.keywordAuthorresonators-
dc.subject.keywordAuthor2D material-
dc.subject.keywordAuthoroptical absorption-
dc.subject.keywordAuthorhybrid devices-
dc.subject.keywordAuthorchemical vapor deposition-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE