Full metadata record

DC Field Value Language
dc.contributor.authorKwon, Soonil-
dc.date.accessioned2024-01-19T13:38:24Z-
dc.date.available2024-01-19T13:38:24Z-
dc.date.created2022-03-07-
dc.date.issued2007-
dc.identifier.issn0302-9743-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/116396-
dc.description.abstractInformation drawn from conversational speech can be useful for enabling intelligent interactions between humans and computers. Speaker information can be obtained from speech signals by performing Speaker Segmentation. In this paper, a method for Speaker Segmentation is presented to address the challenge of identifying speakers even when utterances are very short (0.5sec). This method, involving the selective use of feature vectors, experimentally reduced the relative error rates by 27-42% for groups of 2 to 16 speakers as compared to the conventional approach for Speaker Segmentation. Thus, this new approach offers a way to significantly improve speech-data classification and retrieval systems.-
dc.languageEnglish-
dc.publisherSPRINGER-VERLAG BERLIN-
dc.titleSpeaker segmentation for intelligent responsive space-
dc.typeConference-
dc.description.journalClass1-
dc.identifier.bibliographicCitation12th International Conference on Human-Computer Interaction (HCI International 2007), v.4552, pp.385 - 392-
dc.citation.title12th International Conference on Human-Computer Interaction (HCI International 2007)-
dc.citation.volume4552-
dc.citation.startPage385-
dc.citation.endPage392-
dc.citation.conferencePlaceGE-
dc.citation.conferencePlaceBeijing, PEOPLES R CHINA-
dc.citation.conferenceDate2007-07-22-
dc.relation.isPartOfHUMAN-COMPUTER INTERACTION, PT 3, PROCEEDINGS-
dc.identifier.wosid000248079100041-
dc.identifier.scopusid2-s2.0-38149127266-
dc.type.docTypeProceedings Paper-

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE