Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Gupta, P. | - |
dc.contributor.author | Kim, Y. | - |
dc.contributor.author | Im, J. | - |
dc.contributor.author | Kang, G. | - |
dc.contributor.author | Urbas, A.M. | - |
dc.contributor.author | Kim, K. | - |
dc.date.accessioned | 2024-01-19T14:00:15Z | - |
dc.date.available | 2024-01-19T14:00:15Z | - |
dc.date.created | 2021-10-21 | - |
dc.date.issued | 2021-09-27 | - |
dc.identifier.issn | 2574-0962 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/116456 | - |
dc.description.abstract | In this work, a multiscale thin-film membrane of self-aggregated anodized aluminum oxide (AAO) nanowire structure was developed to enhance the efficiency of GaSb photovoltaic (PV) cell using both optical haze and passive radiative-cooling effects in a broad region of the solar spectrum. We controlled, (1) the optical properties of thin-film AAO and (2) the plasmonic-induced perfect absorption/emission by changing packing densities and lengths of AAO nanowires during the anodization and wet etching processes. The AAO nanowire structures provide 98% absorption/emission in the environmental emission/transmission window (8-13 μm), resulting in efficient passive self-cooling and higher-order optical haze transmission up to approximately 98%; privileged characteristics enhance the suppressed PV efficiency due to the unwanted reflection of incident light and excessive heating effects caused by low- and high-energy photons unused by the band gap of the cell. By integrating this thin-film nanowire structure membrane with the front surface of the GaSb cell, we achieved an overall increase in efficiency of 18% in contrast with a bare cell. ? 2021 American Chemical Society. | - |
dc.language | English | - |
dc.publisher | American Chemical Society | - |
dc.subject | Absorption cooling | - |
dc.subject | Alumina | - |
dc.subject | Aluminum oxide | - |
dc.subject | Cells | - |
dc.subject | Cytology | - |
dc.subject | Energy gap | - |
dc.subject | Gallium compounds | - |
dc.subject | III-V semiconductors | - |
dc.subject | Light transmission | - |
dc.subject | Nanowires | - |
dc.subject | Optical properties | - |
dc.subject | Photoelectrochemical cells | - |
dc.subject | Photovoltaic cells | - |
dc.subject | Photovoltaic effects | - |
dc.subject | Radiative Cooling | - |
dc.subject | Semiconducting antimony compounds | - |
dc.subject | Thin film solar cells | - |
dc.subject | Thin films | - |
dc.subject | Wet etching | - |
dc.subject | Anodized aluminum oxide | - |
dc.subject | Environmental emissions | - |
dc.subject | Excessive heating | - |
dc.subject | High energy photons | - |
dc.subject | Nanowire structures | - |
dc.subject | Optical properties of thin films | - |
dc.subject | PV efficiencies | - |
dc.subject | Thin film membrane | - |
dc.subject | Optical films | - |
dc.title | Enhancing the Efficiency of GaSb Photovoltaic Cell Using Thin-Film Multiscale Haze and Radiative Cooling | - |
dc.type | Article | - |
dc.identifier.doi | 10.1021/acsaem.1c01536 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | ACS Applied Energy Materials, v.4, no.9, pp.9304 - 9314 | - |
dc.citation.title | ACS Applied Energy Materials | - |
dc.citation.volume | 4 | - |
dc.citation.number | 9 | - |
dc.citation.startPage | 9304 | - |
dc.citation.endPage | 9314 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000703338600064 | - |
dc.identifier.scopusid | 2-s2.0-85114368810 | - |
dc.relation.journalWebOfScienceCategory | Chemistry, Physical | - |
dc.relation.journalWebOfScienceCategory | Energy & Fuels | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalResearchArea | Chemistry | - |
dc.relation.journalResearchArea | Energy & Fuels | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | Absorption cooling | - |
dc.subject.keywordPlus | Alumina | - |
dc.subject.keywordPlus | Aluminum oxide | - |
dc.subject.keywordPlus | Cells | - |
dc.subject.keywordPlus | Cytology | - |
dc.subject.keywordPlus | Energy gap | - |
dc.subject.keywordPlus | Gallium compounds | - |
dc.subject.keywordPlus | III-V semiconductors | - |
dc.subject.keywordPlus | Light transmission | - |
dc.subject.keywordPlus | Nanowires | - |
dc.subject.keywordPlus | Optical properties | - |
dc.subject.keywordPlus | Photoelectrochemical cells | - |
dc.subject.keywordPlus | Photovoltaic cells | - |
dc.subject.keywordPlus | Photovoltaic effects | - |
dc.subject.keywordPlus | Radiative Cooling | - |
dc.subject.keywordPlus | Semiconducting antimony compounds | - |
dc.subject.keywordPlus | Thin film solar cells | - |
dc.subject.keywordPlus | Thin films | - |
dc.subject.keywordPlus | Wet etching | - |
dc.subject.keywordPlus | Anodized aluminum oxide | - |
dc.subject.keywordPlus | Environmental emissions | - |
dc.subject.keywordPlus | Excessive heating | - |
dc.subject.keywordPlus | High energy photons | - |
dc.subject.keywordPlus | Nanowire structures | - |
dc.subject.keywordPlus | Optical properties of thin films | - |
dc.subject.keywordPlus | PV efficiencies | - |
dc.subject.keywordPlus | Thin film membrane | - |
dc.subject.keywordPlus | Optical films | - |
dc.subject.keywordAuthor | anodized aluminum oxide nanowires | - |
dc.subject.keywordAuthor | daytime passive radiative cooling | - |
dc.subject.keywordAuthor | infrared broad-band absorption/emission | - |
dc.subject.keywordAuthor | localized surface plasmon resonances | - |
dc.subject.keywordAuthor | low-band-gap GaSb photovoltaic cell | - |
dc.subject.keywordAuthor | optical haze | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.