Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Oh, Jeong Hyun | - |
dc.contributor.author | Han, Gyeong Ho | - |
dc.contributor.author | Kim, Hyunki | - |
dc.contributor.author | Jang, Ho Won | - |
dc.contributor.author | Park, Hyun S. | - |
dc.contributor.author | Kim, Soo Young | - |
dc.contributor.author | Ahn, Sang Hyun | - |
dc.date.accessioned | 2024-01-19T14:00:24Z | - |
dc.date.available | 2024-01-19T14:00:24Z | - |
dc.date.created | 2021-10-21 | - |
dc.date.issued | 2021-09-15 | - |
dc.identifier.issn | 1385-8947 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/116466 | - |
dc.description.abstract | The low performance and high cost of oxygen-evolution electrodes limit an efficient hydrogen production using the proton exchange membrane water electrolyzer (PEMWE). Here, a facile strategy to fabricate Ir-based gas diffusion electrodes (GDEs) is proposed using electrochemical methods and subsequent oxidation processes. In brief, the spontaneous displacement of Ir on Ni supported by a carbon paper facilitates the simple fabrication of a metallic Ir GDE with an Ir loading mass of 53.9 mu gIr/cm2. Further, electrochemical and thermochemical oxidation processes enable modulation of the Ir oxidation state. Based on half-cell measurements, it is revealed that the Ir3+ and Ir4+ ratios play an important role in the activity and stability, respectively, of the oxygen evolution reaction. Compared with the state-of-the-art Ir-based anodes, the Ir-based GDE employed as an anode for PEMWE singlecell operation demonstrates a superior mass activity of 6.8 A/mgIr at a cell voltage of 1.6 Vcell, originating from the structural advantage of GDEs for achieving high Ir utilization. Moreover, the PEMWE shows acceptable stability during long-term (12 h) operations at a current density of 1.00 A/cm2. | - |
dc.language | English | - |
dc.publisher | ELSEVIER SCIENCE SA | - |
dc.subject | OXYGEN EVOLUTION REACTION | - |
dc.subject | IRIDIUM OXIDE | - |
dc.subject | REACTION ELECTROCATALYSTS | - |
dc.subject | HYDROGEN-PRODUCTION | - |
dc.subject | CATALYST | - |
dc.subject | PERFORMANCE | - |
dc.subject | OXIDATION | - |
dc.subject | NANOPARTICLES | - |
dc.subject | MECHANISMS | - |
dc.subject | LAYER | - |
dc.title | Activity and stability of Ir-based gas diffusion electrode for proton exchange membrane water electrolyzer | - |
dc.type | Article | - |
dc.identifier.doi | 10.1016/j.cej.2020.127696 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | CHEMICAL ENGINEERING JOURNAL, v.420 | - |
dc.citation.title | CHEMICAL ENGINEERING JOURNAL | - |
dc.citation.volume | 420 | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000664255400003 | - |
dc.identifier.scopusid | 2-s2.0-85096493240 | - |
dc.relation.journalWebOfScienceCategory | Engineering, Environmental | - |
dc.relation.journalWebOfScienceCategory | Engineering, Chemical | - |
dc.relation.journalResearchArea | Engineering | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | OXYGEN EVOLUTION REACTION | - |
dc.subject.keywordPlus | IRIDIUM OXIDE | - |
dc.subject.keywordPlus | REACTION ELECTROCATALYSTS | - |
dc.subject.keywordPlus | HYDROGEN-PRODUCTION | - |
dc.subject.keywordPlus | CATALYST | - |
dc.subject.keywordPlus | PERFORMANCE | - |
dc.subject.keywordPlus | OXIDATION | - |
dc.subject.keywordPlus | NANOPARTICLES | - |
dc.subject.keywordPlus | MECHANISMS | - |
dc.subject.keywordPlus | LAYER | - |
dc.subject.keywordAuthor | Proton exchange membrane water electrolyzer | - |
dc.subject.keywordAuthor | Oxygen evolution reaction | - |
dc.subject.keywordAuthor | Gas diffusion electrode | - |
dc.subject.keywordAuthor | Electrodeposition | - |
dc.subject.keywordAuthor | Galvanic displacement | - |
dc.subject.keywordAuthor | Ir electronic structure | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.