Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kim, Ryung Il | - |
dc.contributor.author | GEONCHANG LEE | - |
dc.contributor.author | Lee, Jung-Hyun | - |
dc.contributor.author | Park, Ji Jong | - |
dc.contributor.author | Lee, Albert S. | - |
dc.contributor.author | Hwang, Seung Sang | - |
dc.date.accessioned | 2024-01-19T14:01:04Z | - |
dc.date.available | 2024-01-19T14:01:04Z | - |
dc.date.created | 2022-01-10 | - |
dc.date.issued | 2021-09 | - |
dc.identifier.issn | 2637-6105 | - |
dc.identifier.uri | https://pubs.kist.re.kr/handle/201004/116507 | - |
dc.description.abstract | Elastomeric bioscaffolds with tunable elasticity and biodegradability were synthesized via ring opening polymerization of polycaprolactone (PCL) and polylactide (PLA) with a bifunctional polyethylene glycol macroinitiator, followed by chain extension with diisocyanate to form urethane linkages. Through fine tuning of the macroinitiator and PCL/PLA weight fraction and molecular weight, a data set of elastomeric bioscaffolds gives structure-property insights into their thermal, mechanical, and biodegradability properties as they relate to triblock copolymer composition and mechanical weight. These materials were targeted to be 3D-printed by commercial devices, and their unique rheological properties enable impeccable multiscale microstructure formation. Simplicity in synthesis and fabrication as well as tunable biodegradability (1 day to 2 months) and elasticity (modulus 32-94 MPa) suggest the vast wide-ranging utility and prospective application in bioscaffolds for future therapeutic treatments. | - |
dc.language | English | - |
dc.publisher | AMER CHEMICAL SOC | - |
dc.title | Structure-Property Relationships of 3D-Printable Chain-Extended Block Copolymers with Tunable Elasticity and Biodegradability | - |
dc.type | Article | - |
dc.identifier.doi | 10.1021/acsapm.1c00860 | - |
dc.description.journalClass | 1 | - |
dc.identifier.bibliographicCitation | ACS APPLIED POLYMER MATERIALS, v.3, no.9, pp.4708 - 4716 | - |
dc.citation.title | ACS APPLIED POLYMER MATERIALS | - |
dc.citation.volume | 3 | - |
dc.citation.number | 9 | - |
dc.citation.startPage | 4708 | - |
dc.citation.endPage | 4716 | - |
dc.description.isOpenAccess | N | - |
dc.description.journalRegisteredClass | scie | - |
dc.description.journalRegisteredClass | scopus | - |
dc.identifier.wosid | 000696179100039 | - |
dc.identifier.scopusid | 2-s2.0-85114347324 | - |
dc.relation.journalWebOfScienceCategory | Materials Science, Multidisciplinary | - |
dc.relation.journalWebOfScienceCategory | Polymer Science | - |
dc.relation.journalResearchArea | Materials Science | - |
dc.relation.journalResearchArea | Polymer Science | - |
dc.type.docType | Article | - |
dc.subject.keywordPlus | CRYSTALLIZATION BEHAVIOR | - |
dc.subject.keywordPlus | POLYCAPROLACTONE | - |
dc.subject.keywordPlus | POLYMERS | - |
dc.subject.keywordPlus | DEGRADATION | - |
dc.subject.keywordPlus | BLENDS | - |
dc.subject.keywordPlus | PCL | - |
dc.subject.keywordPlus | COMPOSITE | - |
dc.subject.keywordPlus | SCAFFOLDS | - |
dc.subject.keywordPlus | BIOINK | - |
dc.subject.keywordPlus | PLA | - |
dc.subject.keywordAuthor | biodegradable polymers | - |
dc.subject.keywordAuthor | bioelastomer | - |
dc.subject.keywordAuthor | 3D printing | - |
dc.subject.keywordAuthor | block copolymer | - |
dc.subject.keywordAuthor | polyurethane | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.