Full metadata record

DC Field Value Language
dc.contributor.authorYang, Yoonsik-
dc.contributor.authorKim, Haksub-
dc.contributor.authorChoi, Heeseung-
dc.contributor.authorChae, Seungho-
dc.contributor.authorKim, Ig-Jae-
dc.date.accessioned2024-01-19T14:01:22Z-
dc.date.available2024-01-19T14:01:22Z-
dc.date.created2021-11-16-
dc.date.issued2021-09-
dc.identifier.issn1057-7149-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/116527-
dc.description.abstractVisual surveillance produces a significant amount of raw video data that can be time consuming to browse and analyze. In this work, we present a video synopsis methodology called "scene adaptive online video synopsis via dynamic tube rearrangement using octree (SSOcT)" that can effectively condense input surveillance videos. Our method entailed summarizing the input video by analyzing scene characteristics and determining an effective spatio-temporal 3D structure for video synopsis. For this purpose, we first analyzed the attributes of each extracted tube with respect to scene geometry and complexity. Then, we adaptively grouped the tubes using an online grouping algorithm that exploits these scene characteristics. Finally, the tube groups were dynamically rearranged using the proposed octree-based algorithm that efficiently inserted and refined tubes containing high spatio-temporal movements in real time. Extensive video synopsis experimental results are provided, demonstrating the effectiveness and efficiency of our method in summarizing real-world surveillance videos with diverse scene characteristics.-
dc.languageEnglish-
dc.publisherInstitute of Electrical and Electronics Engineers-
dc.titleScene Adaptive Online Surveillance Video Synopsis via Dynamic Tube Rearrangement Using Octree-
dc.typeArticle-
dc.identifier.doi10.1109/TIP.2021.3114986-
dc.description.journalClass1-
dc.identifier.bibliographicCitationIEEE Transactions on Image Processing, v.30, pp.8318 - 8331-
dc.citation.titleIEEE Transactions on Image Processing-
dc.citation.volume30-
dc.citation.startPage8318-
dc.citation.endPage8331-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000704110000002-
dc.identifier.scopusid2-s2.0-85116930892-
dc.relation.journalWebOfScienceCategoryComputer Science, Artificial Intelligence-
dc.relation.journalWebOfScienceCategoryEngineering, Electrical & Electronic-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaEngineering-
dc.type.docTypeArticle-
dc.subject.keywordPlusIMAGE-
dc.subject.keywordPlusMONTAGES-
dc.subject.keywordPlusSYSTEM-
dc.subject.keywordAuthorElectron tubes-
dc.subject.keywordAuthorStreaming media-
dc.subject.keywordAuthorSurveillance-
dc.subject.keywordAuthorHeuristic algorithms-
dc.subject.keywordAuthorComplexity theory-
dc.subject.keywordAuthorGeometry-
dc.subject.keywordAuthorReal-time systems-
dc.subject.keywordAuthorSurveillance video synopsis-
dc.subject.keywordAuthorscene analysis-
dc.subject.keywordAuthortube grouping-
dc.subject.keywordAuthoroctree-based tube rearrangement-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE