Full metadata record

DC Field Value Language
dc.contributor.authorKim, Jeongrae-
dc.contributor.authorTiong, Leslie Ching Ow-
dc.contributor.authorKim, Donghun-
dc.contributor.authorHan, Sang Soo-
dc.date.accessioned2024-01-19T14:01:49Z-
dc.date.available2024-01-19T14:01:49Z-
dc.date.created2021-10-21-
dc.date.issued2021-09-
dc.identifier.issn1948-7185-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/116556-
dc.description.abstractWe report a deep learning (DL) model that predicts various material properties while accepting directly accessible inputs from routine experimental platforms: chemical compositions and diffraction data, which can be obtained from the X-ray or electron-beam diffraction and energy-dispersive spectroscopy, respectively. These heterogeneous forms of inputs are treated simultaneously in our DL model, where the novel chemical composition vector is proposed by developing element embedding with the normalized composition matrix. With 1524 binary samples available in the Materials Project database, the model predicts formation energies and band gaps with mean absolute errors of 0.29 eV/atom and 0.66 eV, respectively. According to the weighing test between these two inputs, the properties tend to be more influenced by the chemical composition than the crystal structure. This work intentionally avoids using inputs that are not directly accessible (e.g., atomic coordinates) in experimental platforms, and thus is expected to substantially improve the practical use of DL models.-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.titleDeep Learning-Based Prediction of Material Properties Using Chemical Compositions and Diffraction Patterns as Experimentally Accessible Inputs-
dc.typeArticle-
dc.identifier.doi10.1021/acs.jpclett.1c02305-
dc.description.journalClass1-
dc.identifier.bibliographicCitationThe Journal of Physical Chemistry Letters, v.12, no.34, pp.8376 - 8383-
dc.citation.titleThe Journal of Physical Chemistry Letters-
dc.citation.volume12-
dc.citation.number34-
dc.citation.startPage8376-
dc.citation.endPage8383-
dc.description.isOpenAccessN-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000693398700031-
dc.identifier.scopusid2-s2.0-85114626971-
dc.relation.journalWebOfScienceCategoryChemistry, Physical-
dc.relation.journalWebOfScienceCategoryNanoscience & Nanotechnology-
dc.relation.journalWebOfScienceCategoryMaterials Science, Multidisciplinary-
dc.relation.journalWebOfScienceCategoryPhysics, Atomic, Molecular & Chemical-
dc.relation.journalResearchAreaChemistry-
dc.relation.journalResearchAreaScience & Technology - Other Topics-
dc.relation.journalResearchAreaMaterials Science-
dc.relation.journalResearchAreaPhysics-
dc.type.docTypeArticle-
dc.subject.keywordAuthorDeep learning-
dc.subject.keywordAuthorMaterial properties-
dc.subject.keywordAuthorChemical composition-
dc.subject.keywordAuthorDiffraction pattern-
dc.subject.keywordAuthorElement vector-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE