Full metadata record

DC Field Value Language
dc.contributor.authorJung, D.-
dc.contributor.authorKim, J.-
dc.contributor.authorKim, M.-
dc.contributor.authorWon, C.W.-
dc.contributor.authorMun, K.-
dc.date.accessioned2024-01-19T14:01:55Z-
dc.date.available2024-01-19T14:01:55Z-
dc.date.created2021-09-02-
dc.date.issued2021-09-
dc.identifier.issn2168-2194-
dc.identifier.urihttps://pubs.kist.re.kr/handle/201004/116563-
dc.description.abstractFaced with the rapidly aging world population, frailty has emerged as a major health burden among the elderly. This study aimed to investigate the feasibility of using temporal gait characteristics and a long short-term memory network for assessing frailty. Seventy-four community-dwelling elderly individuals participated in this study. The participants were categorized into three groups by their FRAIL scale: robust, pre-frail, and frail groups. The participants completed a 7-meter walking at the self-selected pace with a gyroscope on each foot. Analyzing the gyroscopic data produced seven temporal gait parameters per each gait cycle. Enumerating six consecutive values of each gait parameter produced the gait sequence features which were used as frailty predictors along with the demographic features. Five-fold cross-validation was applied to 70% of the data, and the remaining 30% were used as test data. An F1-score of 0.931 was achieved in classifying the robust, pre-frail, and frail groups by the random forest model trained with age, sex, and the outputs of the long short-term memory network-based classifier that used the initial and terminal double-limb support, step, and stride times as inputs. The proposed approach of assessing frailty using the arrhythmic gait pattern of the elderly and machine learning technique is novel and promising. Pioneering a way that self-monitor frailty at home without any help from experts, the study can contribute to early diagnosis of frailty and make timely medical intervention possible. IEEE-
dc.languageEnglish-
dc.publisherInstitute of Electrical and Electronics Engineers Inc.-
dc.subjectBrain-
dc.subjectDecision trees-
dc.subjectDiagnosis-
dc.subjectLearning systems-
dc.subjectLong short-term memory-
dc.subjectPopulation dynamics-
dc.subjectCross validation-
dc.subjectDemographic features-
dc.subjectGait parameters-
dc.subjectMachine learning techniques-
dc.subjectMedical intervention-
dc.subjectRandom forest modeling-
dc.subjectShort term memory-
dc.subjectWorld population-
dc.subjectGait analysis-
dc.titleFrailty Assessment Using Temporal Gait Characteristics and a Long Short-Term Memory Network-
dc.typeArticle-
dc.identifier.doi10.1109/JBHI.2021.3067931-
dc.description.journalClass1-
dc.identifier.bibliographicCitationIEEE Journal of Biomedical and Health Informatics, v.25, no.9, pp.3649 - 3658-
dc.citation.titleIEEE Journal of Biomedical and Health Informatics-
dc.citation.volume25-
dc.citation.number9-
dc.citation.startPage3649-
dc.citation.endPage3658-
dc.description.journalRegisteredClassscie-
dc.description.journalRegisteredClassscopus-
dc.identifier.wosid000692596400043-
dc.identifier.scopusid2-s2.0-85103303599-
dc.relation.journalWebOfScienceCategoryComputer Science, Information Systems-
dc.relation.journalWebOfScienceCategoryComputer Science, Interdisciplinary Applications-
dc.relation.journalWebOfScienceCategoryMathematical & Computational Biology-
dc.relation.journalWebOfScienceCategoryMedical Informatics-
dc.relation.journalResearchAreaComputer Science-
dc.relation.journalResearchAreaMathematical & Computational Biology-
dc.relation.journalResearchAreaMedical Informatics-
dc.type.docTypeArticle-
dc.subject.keywordPlusBrain-
dc.subject.keywordPlusDecision trees-
dc.subject.keywordPlusDiagnosis-
dc.subject.keywordPlusLearning systems-
dc.subject.keywordPlusLong short-term memory-
dc.subject.keywordPlusPopulation dynamics-
dc.subject.keywordPlusCross validation-
dc.subject.keywordPlusDemographic features-
dc.subject.keywordPlusGait parameters-
dc.subject.keywordPlusMachine learning techniques-
dc.subject.keywordPlusMedical intervention-
dc.subject.keywordPlusRandom forest modeling-
dc.subject.keywordPlusShort term memory-
dc.subject.keywordPlusWorld population-
dc.subject.keywordPlusGait analysis-
dc.subject.keywordAuthorAging-
dc.subject.keywordAuthorAngular velocity-
dc.subject.keywordAuthorFoot-
dc.subject.keywordAuthorFrailty-
dc.subject.keywordAuthorgait-
dc.subject.keywordAuthorLegged locomotion-
dc.subject.keywordAuthorlong short-term memory network-
dc.subject.keywordAuthormachine learning-
dc.subject.keywordAuthorpre-frailty-
dc.subject.keywordAuthorSenior citizens-
dc.subject.keywordAuthorSociology-
dc.subject.keywordAuthorStatistics-
Appears in Collections:
KIST Article > 2021
Files in This Item:
There are no files associated with this item.
Export
RIS (EndNote)
XLS (Excel)
XML

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

BROWSE